Statisical Themodyanmics Approach
to ligand binding and helix-coil transitions

CCB 341: Physical Chemistry of biochemical systems, Fall 2013

1 Partition function approach to allostery

Please read pp. 181-190 of your text.
The partition function is the sum of the relative probabilities of all
states. We can arbitrarily set the concentration of protein to be unity:
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Note the the partition function is just the sum of the relative populations (concentrations) of all species:
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In general, Q will be a polynomial in the concentration of ligand; this is sometimes called the binding
polynomial. Now, compute the fraction of binding sites that contain ligands:
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Since this is uncoupled binding:
Q = 142kA +k*A% = (1 +kA)?
Compare this to Eq. (5.78) in your text, where they use S for what we call kA. Hence:
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Now f is the fraction of sites that contain ligand; the average number of bound ligands per protein
molecule (not per binding site) is then just v = N f; see Eqgs. 5.80 and 5.83 in your text. [Very advanced:
See Onufriev, Case, Ullmannn, Biochemistry 40, 3413 (2001) for a generalization.]



Suppose we just have a simple acid-base equilibrium:
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Now, k = 107X« and A = 10~P"; hence:
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This yields the usual sigmoidal binding curve discussed in class. Look at the discusion of Fig. 5.13 in
your text.

2 Hemoglobin-like model

Now we consider the more complex model shown at the left. We can

p\ define some new constants, then make a table of relative probabilities:
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Adding up all 12 elements of the Table gives the partition function:
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Now suppose we have no phosphate present, so that u = 0:
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If L =0, get simple non-cooperative binding; for L < 1 and ¢ > 1
(that is, T state is favored in the absence of ligand, but the R state has a
higher affinity), get “hemoglobin-like” cooperative binding.
When p > 0, get a linkage between the binding of L and the binding of P.

3 Helix-coil transitions

Please read pp. 173-180 in your text. These same ideas can be used to study conformational changes in
a single biomolecule, as well as to study ligand binding. Suppose, in a very simple model, each residue
in a protein could be in either a helical configuration (“h”) or a non-helical one (“c” for “coil”). The
equilibrium constant for this change is traditionally called s, so that s = [h]/[c] = exp(—BA€), where
Ag < 0 represents the energy of forming a helical unit relative to a coil unit.

The simplest model says that this equilbrium constant is the same everywhere, and is not dependent
on the conformation of the surrounding residues. Then, for a polypeptide containing N residues:
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where f is the fraction of residues in the helical conformation. (Derive this, using Eq. 1, where s now
takes the place of kA.) Note that s is a function of temperature: at low T, s > 1 and most of the residues
will be in the helical configuration; and at high temperature, s ~ 1 (why?), and half the residues will be
helical and half will be coil.

Another simple model is one of complete cooperativity: either all the residues are helical, or they are
all coil. Here:
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In this model, f will be a sharper function of temperature than in the non-cooperative model.

On p. 174, your text discusses a more complex model, with four rules for determining the required
equilibrium constants (or relative probabilities, or statistical weights.) Although the math becomes some-
what more complex, the basic idea is the same:
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e Compute Q as a function of the model parameters, like s and o. (Note that these parameters may
in turn depend on temperature or concentration or other aspects of the problem.

e Obtain (say) the average number of monomer units in the helical conformation per polymer molecule
by evaluating [dInQ/d Ins].



