
Statisical Themodyanmics Approach
to ligand binding and helix-coil transitions

CCB 341: Physical Chemistry of biochemical systems, Fall 2013

1 Partition function approach to allostery

Please read pp. 181-190 of your text.

Figure 1: Simple model for a
dimeric protein bind-
ing a ligand “L”

The partition function is the sum of the relative probabilities of all
states. We can arbitrarily set the concentration of protein to be unity:

[P] = 1

[Pα ]

[P][L]
= k

[Pα ] = k[L]; [Pβ ] = k[L]

[Pαβ ]

[Pα ][L]
= k ⇒ [Pαβ ] = k2[L]2

Note the the partition function is just the sum of the relative populations (concentrations) of all species:
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qiλ
i

In general, Q will be a polynomial in the concentration of ligand; this is sometimes called the binding
polynomial. Now, compute the fraction of binding sites that contain ligands:
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Since this is uncoupled binding:

Q = 1+2kλ + k2
λ

2 = (1+ kλ )2

Compare this to Eq. (5.78) in your text, where they use S for what we call kλ . Hence:

f =
kλ

1+ kλ
or

f
1− f

= kλ (2)

Now f is the fraction of sites that contain ligand; the average number of bound ligands per protein
molecule (not per binding site) is then just ν = N f ; see Eqs. 5.80 and 5.83 in your text. [Very advanced:
See Onufriev, Case, Ullmannn, Biochemistry 40, 3413 (2001) for a generalization.]
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Suppose we just have a simple acid-base equilibrium:

AH ⇔ A−+H+

Q = 1+ kλ

f = λ
∂ lnQ

∂λ
=

λk
1+λk

Now, k = 10pKa and λ = 10−pH ; hence:

f =
10pKa−pH

1+10pKa−pH (3)

This yields the usual sigmoidal binding curve discussed in class. Look at the discusion of Fig. 5.13 in
your text.

2 Hemoglobin-like model

Figure 2: A more complex
model, binding two
ligands, with a pro-
tein conformational
change coupled to
ligand binding.

Now we consider the more complex model shown at the left. We can
define some new constants, then make a table of relative probabilities:

[T P]

[T ][P]
= κ; µ ≡ [P]

[R]
[T ]

= L

λ T TP R
0 1 µκ L
1 kλ µκkλ Lckλ

1 kλ µκkλ Lckλ

2 k2λ 2 µκk2λ 2 Lc2k2λ 2

Adding up all 12 elements of the Table gives the partition function:

Q = (1+ kλ )2(1+µκ)+L(1+ ckλ )2 (4)

Now suppose we have no phosphate present, so that µ = 0:

f =
1
2

∂ lnQ
∂ lnλ
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λ

2Q
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λ

2Q
∂
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=
λ

2Q
[2(1+ kλ )k+2L(1+ ckλ )ck]

=
(1+ kλ )kλ +L(1+ ckλ )ckλ

(1+ kλ )2 +L(1+ ckλ )2 (5)
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If L = 0, get simple non-cooperative binding; for L < 1 and c > 1
(that is, T state is favored in the absence of ligand, but the R state has a

higher affinity), get “hemoglobin-like” cooperative binding.
When µ > 0, get a linkage between the binding of L and the binding of P.

3 Helix-coil transitions

Please read pp. 173-180 in your text. These same ideas can be used to study conformational changes in
a single biomolecule, as well as to study ligand binding. Suppose, in a very simple model, each residue
in a protein could be in either a helical configuration (“h”) or a non-helical one (“c” for “coil”). The
equilibrium constant for this change is traditionally called s, so that s = [h]/[c] = exp(−β∆ε), where
∆ε < 0 represents the energy of forming a helical unit relative to a coil unit.

The simplest model says that this equilbrium constant is the same everywhere, and is not dependent
on the conformation of the surrounding residues. Then, for a polypeptide containing N residues:

Q = (1+ s)N ⇒ f =
s

1+ s
where f is the fraction of residues in the helical conformation. (Derive this, using Eq. 1, where s now
takes the place of kλ .) Note that s is a function of temperature: at low T, s > 1 and most of the residues
will be in the helical configuration; and at high temperature, s ' 1 (why?), and half the residues will be
helical and half will be coil.

Another simple model is one of complete cooperativity: either all the residues are helical, or they are
all coil. Here:

Q = 1+ sN ⇒ f =
sN

1+ sN

In this model, f will be a sharper function of temperature than in the non-cooperative model.
On p. 174, your text discusses a more complex model, with four rules for determining the required

equilibrium constants (or relative probabilities, or statistical weights.) Although the math becomes some-
what more complex, the basic idea is the same:

• Compute Q as a function of the model parameters, like s and σ . (Note that these parameters may
in turn depend on temperature or concentration or other aspects of the problem.

• Obtain (say) the average number of monomer units in the helical conformation per polymer molecule
by evaluating [∂ lnQ/∂ lns].
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