1. Explain (define in words) each of the symbols in the following expressions
 (a) $\Delta_r G = \Delta_r G^\circ + RT \ln Q$
 (b) $dG = V dp - SdT + \mu_A n_A + \mu_B n_B + \ldots$
 (c) $S = -k \sum p_i \ln p_i$

2. (a) Starting from $dU = dq + dw$, show that $dU = TdS - pdV$; then derive a similar formula for dH.
 (b) Using the results of problem 2a, derive expressions for $(\partial H / \partial S)_p$ and $(\partial U / \partial V)_S$.

3. Write an equation describing how the reaction enthalpy depends on temperature. Define in words each of the symbols that you use.

4. The isothermal compressibility is defined as $\kappa = -(1/V)(\partial V / \partial p)_T$. What is κ for an ideal gas?

5. Draw a sketch of an osmometer, identifying all the parts. What does this measure?

6. For each of the following expressions, is the value (a) always positive; (b) always zero; (c) always negative; (d) none of the above? Justify your answers.
 (a) $\left(\frac{\partial G}{\partial T} \right)_{p, \text{composition}}$
 (b) $\left(\frac{\partial G}{\partial n_1} \right)_{T, p, n_2, n_3, \ldots}$ (ideal solution)
 (c) $\Delta_r G$ (at equilibrium)
 (d) $\Delta_r G^\circ$ (at equilibrium)
 (e) $\Delta_{\text{vap}} H(T_{\text{vap}})$
 (f) $\Delta_{\text{vap}} G(T_{\text{vap}})$

7. For a binary mixture of components “A” and “B”: write an equation for the mole fraction x_A and for the molality b_A. Derive an equation giving x_A in terms of b_A, assuming $x_A \ll 1$. Show your work, and define any symbols you are using.

8. At 25 C, the vapor pressure of pure water is 0.031 atmospheres. What is $\Delta_{\text{vap}} G^\circ$ at this temperature? Note that $R = 8.31$ J K$^{-1}$mol$^{-1}$, and that $\Delta_{\text{vap}} G^\circ \equiv \mu^\circ(\text{gas}) - \mu^\circ(\text{liquid})$. Show your work.

9. Phenol, C_6H_5OH, is a very weak acid, with a pK_a of 9.89. What is the pH of a 1 M solution of phenol in water?

10. The Clausius-Clapeyron equation states that, for a liquid–vapor phase boundary, $d \ln p / dT = \Delta_{\text{vap}} H / (RT^2)$. Assuming that the heat of vaporization is constant over some range of temperature and pressure, show that:
 $\ln p_2 = \ln p_1 + \frac{\Delta_{\text{vap}} H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
 where p_1 is the vapor pressure at temperature T_1, same for p_2, T_2.