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The basic question here: what if we cannot write down expressions for the partition function (or
configurational integral) Q? Of course, we have to know something! We will assume that we can extract
samples from the Boltzmann distribution: this fundamentally implies that we can evaluate averages
of mechanical properties, that is, of variables that are functions just of the structures we sample. To
establish some notation:

〈 f (x)〉 ≡
∫

f (x)e−βV(x)dx '∑
i

f (xi) (1)

1 Thermodynamic integration

Suppose that the potential energy, V (and hence Q and A), are parameterized by λ : V → V(λ). Then,
since A = −kTlnQ:

∂A(λ)

∂λ
= −kT

∫
∂

∂λ
e−βV(λ)dq/Q =

1
Q

∫ (
∂V
∂λ

)
e−βV(λ)dq =

〈
∂V
∂λ

〉
λ

(2)

The total change in A on going from λ = 0 to λ = 1 is:

∆A = A(1)− A(0) =
∫ 1

0

〈
∂V
∂λ

〉
λ

dλ (3)

This is called thermodynamic integration, and is a fundamental connection between macroscopic
free enegies, and microscopic simulations. The integral over λ can be done by quadrature, and the
Boltzmann averages 〈∂V/∂λ〉λ can be carried out by molecular dynamics or Monte Carlo procedures.

1.1 Linear mixing

Consider the special case of linear mixing, where

V(λ) = (1− λ)V0 + λV1

Then ∂V/∂λ = V1 −V0 ≡ ∆V (often called the energy gap), and

∆A =
∫ 1

0
〈∆V〉λ dλ (4)

The simplest numerical approximation to the λ integral is just to evaluate the integrand at the mid-
point, so that ∆A = 〈∆V〉1/2. This says that the free energy difference is approximately equal to the
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average potential energy difference, evaluated for a (hypothetical) state half-way between λ = 0 and
λ = 1.

It is often convenient for other purposes to perform simulations only at the endpoints. In this case,
a convenient formula would be:

∆A ' 1
2
〈∆V〉0 +

1
2
〈∆V〉1 (5)

And more elaborate formulas (e.g. from Gaussian integration) are feasible (and often used). See Hum-
mer & Szabo, J. Chem. Phys. 105, 2004 (1996) for a fuller discussion.

2 A simple model: “Marcus theory”

Rudy Marcus did many interesting things, but the most famous was to analyze a very simple two-state
problem:
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VA(q) =
1
2

k(q− qA)
2

VB(q) =
1
2

k(q− qB)
2 + ∆E

∆V(q) = −k(q− qA)

(
2λ

k

)1/2

+ λ + ∆E

2.1 Analyze this with thermodynamic integration:

〈VB −VA〉A = Q−1
A

∫ [
−k(q− qA)

(
2λ

k

)1/2

+ λ + ∆E

]
e−βVA(q)dq = λ + ∆E (6)

〈VB −VA〉B = −λ + ∆E; ∆A ' 1
2
[〈∆V〉A + 〈∆V〉B] = ∆E (7)

What is the distribution of ∆V in the VA state?

ρ(∆V) = ρ(q)
∣∣∣∣ dq
d∆V

∣∣∣∣ where q(∆V) = −
[
(∆V − λ− ∆E)

(2kλ)1/2

]
+ qA (8)

ρ(∆V) ∼ 1√
2kλ

exp {−βVA [q(∆V)]} ' exp
{
− (∆V − λ− ∆E)2

2σ2

}
with σ2 = 2λ/β (9)

Hence, the mean of the distribution gives λ + ∆E, and the width of the distribution gives λ (the
“relaxation”); knowing both allows you to get ∆E and λ separately.
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2.2 Connection to kinetics of electron transfer

Now we can find the point q∗ where ∆V(q∗) = 0:

(q∗ − qA) =
(λ + ∆E)
(2λk)1/2 =

λ(1 + ∆E/λ)

(2λk)1/2 (10)

Next, we can compute the activation energy, which is the value of VA(q∗):

VA(q∗) =
1
2

k(q∗ − qA)
2 =

1
2

k
λ2(1 + ∆E/λ)2

(2λk)
=

λ

4

(
1 +

∆E
λ

)2

(11)

Note that terms in k cancel.

3 Application: pKa behavior in proteins
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To apply any of these models, we need to know the average energy gap at different λ values, and it

also helps to know its distribution.
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λ=0.11

λ=0.5

λ=0.89

Lambda    DG/DL

0.11270    −3.1

0.50000    −64.5
0.88729    −131.4

(kcal/mol)

Simonson, Carlson, Case, JACS 126:4167 (2004)

Nonelectrostatic contributions are generally much more complex:

Shirts, Pitera, Swope, Pande, J. Chem. Phys. 119, 5740 (2003).
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4 Biassed sampling

A

B

δ

ρB

ρA
= Keq = exp(−∆A/kT)

To create a potential of mean force:

ρi = (−W(δi)/kT)

4.1 Reduced distribution functions:

Now ρ(δ) is a reduced distribtution function:

ρ(δ) =

∫
exp(−βV)dΣ∫

exp(−βV)dδdΣ

In order to improve sampling in high-energy regions, add a biassing (umbrella) potential U(δ). Then
the observed (simulated) reduced distribution will be:

ρ∗(δ) = e−βU(δ)

∫
exp(−βV)dΣ∫

exp(−β(U + V))dδdΣ

= e−βU(δ)

∫
exp(−βV)dΣ∫

exp(−β(V))dδdΣ

∫
exp(−βV)dδdΣ∫

exp(−βU) exp(−βV))dδdΣ

= e−βU(δ)ρ(δ)/
〈

e−βU
〉
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4.2 Umbrella sampling

A

B

δ

U U U UU
1 2 3 4 5

Taking logarithms:

W∗(δ) = W(δ) + U(δ) + kT ln
〈

e−βU
〉

Note that the final term is independent of δ. These can be treated as adjustable parameters, deter-
mined so that the W(δ) values from adjacent windows agree in their overlap region. See J. Comput.
Chem. 16, 1339 (1995).

4.3 Example: oxygen binding to myoglobin
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One possible reaction coordinate

Kottalam & Case, JACS 110, 7690 (1988)

Computing a pmf
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Now try to flatten the potential
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Look at different temperatures

5 Free energy perturbation theory

Here is an (initially) completely different approach:

∆A = −kT ln
(

Q1

Q0

)
(12)

= −kT ln
(∫

exp(−βE1) exp(βE0) exp(−βE0)dq∫
exp(−βE0)dq

)
(13)

= −kT ln
(

1
Q0

∫
exp(−β[E1 − E0]) exp(−βE0)

)
(14)

= −kT ln 〈exp(−[E1 − E0]/kT〉0 (15)
= kT ln 〈exp(−[E0 − E1]/kT〉1 (16)

This is generally called “perturbation theory”, and involves averaging the exponential of the energy gap,
rather than the energy gap itself.
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