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Techniques based on rotational motion

What we studied last time probed translational diffusion. There is
another set of experiments that see size and shape through the lens of
rotational motion. We can still use the Einstein-Sutherland equation

D = kg T/f, where now D and f are rotational diffusion and friction
coefficients. A big difference here, though, is that there are no
concentration gradients for rotational motion.

In isotropic solution, all orientations are equally likely, and something
must be done to observe rotational diffusion. As with translation, there
are two broad categories of experiments. In one, the intial distribution is
perturbed, creating a non-isotropic distribution of molecular orientations.
Then the decay back to equilibrium is analyzed. In the second set of
experiments, a force is applied to achieve partial orientation, and we solve
an equilibrium problem where the external torque (which creates an
oriented sample) is balanced by rotational diffusion (which tends to
destroy such orientation).

The first category includes fluorescence depolarization (Chap. D8) and
NMR relaxation (coming later); the second includes electric birefringence
(Chap. D6) and flow birefringence (Chap. D7).



Basics of fluorescence
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Polarization in rigid systems

Consider a rigid, isotropic sample. The probability of finding a molecule
with its transition dipole pointing the 6, ¢ direction is proportional to
sinf0dOd¢. Now excite this with light polarized along the z direction:
the excitation probability is proportional to \u~E|2, or to cos? 6. Thus,
the distribution of excited molecules will go like cos? @sin0d6d¢.
Normalizing this, we can write the distribution of excited states as

W(8,0,t) = [(3/4n)c05265in9d6d¢] exp(—t/7F)

At a subsequent time, the molecule may emit (fluoresce). Because the
excited molecules are anisotropic, the emitted radiation will also be
anisotropic. The emitted radiation polarized along z will be

hj < //cos2 OW(6,0,t)d0d¢ = (3/4m)exp(—t/TF) //cos“Gsin 0d0d¢ = (3/5)exp(—t/TF)

Radiation polarized on x (or along y) will be

1) o< v//sinz 6cos® 9 W(6,0,t)d0dd = (3/47r)e><p(—t/1:,.-).//cos2 ¢ cos? 0sin3 0d0dg = (1/5)exp(—t/TF)



Fluorescence polarization: time dependence

There are two conventional ways to express this, as polarization or as
anisotropy:

P=(l—1)/(h+1); A=(h—1)/(h+21)
If there is no motion, then P(0) =1/2 and A(0) = 2/5. If the emission
dipole moment is aligned at a angle & relative to the absorption dipole,
so that cos& = -/, then
P =(3cos?E —1)/(cos’E +3); A= (3cos?E —1)/5=(2/5)Pa(cosé)

Now, for a non-rigid system, if we measure the time dependence of
polarization of fluorescence, it will look like a time correlation function:

A(t) = (2/5) (P2(1(0) - u(t)) exp(—t/7F) = (2/5) (P2(cos&(t))) exp(—t/7F)



Rotational diffusion

reorienting collisions with the solvent molecules,
and hence u should execute a “random walk" on
the surface of the unit sphere. Let f(u,t) be
the probability density of having a molecule
with orientation u at time t; hence
f(u,t)sin@d6d¢ is the fraction of molecules in
the solid angle sin0d60d¢. Debye proposed a
/ diffusion equation:

| In a liquid, the molecule will suffer many small

%f(u, t) = DV2f(u,t) (1)

Let's use spherical polar coordinates (r,0,¢), where r =1. The Laplacian
operator is then

2 L [anel (snel )y 2] = 72

\% —Sinze{smﬂae (smﬂge +892 =/ (2)
? 52
Ef(u,t):—Dl f(u,t) (3)




Solving the rotational diffusion problem

The formal solution of this differential equation is easily written down:

f(u, t) = exp(—Dt1?)f(u,0) (4)

They can be written in terms of the eigenfunctions of 12, which are the
spherical harmonics:

12Y () = 1(1+1) Yipm (u) (5)

exp(—Dt1?) Y}, (u) = exp(—I(/+ 1) Dt) Yjp(u)

The particular solution to Eq. 3 we want here corresponds to an initial
condtion where u is sharply peaked at ug:

£(0.0) = (i) 800 00) = (12 ) X Yo (00) Vi ()

where the final equality exploits the closure relation of the sphereical
harmonics. Combining this with Eq. 4 gives:

f(u,t) =) exp(~/(I+1)Dt) Yjm(uo) iy, (u) (7)
Im




Time-correlation functions

The time-correlation functions needed for NMR relaxation only require
the second moments of this distribution. If F,(u) ~ (47/5)'/2 Ya,(u):

< Fo(uo)Fi(u)> ~ (417T>/d2uo/d2u {45”] Yan(tio) V5. (1)

= (;) exp(—6D7)

Hence, for a rigid molecule undergoing such isotropic Brownian rotational
motion, the normalized F, time-correlation functions for all internuclear
vectors all decay in the same way, as

n=2
C(1) =< Pa(up-u) >= Y < Fy(uo)F #,(u) >=exp(—7/7c) (8)
n=-—2
where the time constant 7. is 1/6D = V,,n/kg T. (For later): its Fourier
transform is then a Lorentzian:

it w) = %/ow(cosa)t)C(t)dt _ (E) _ e (9)

1+ w272



Fluorescence depolarization in DNA
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ABSTRACT: The structural dynamics of mismatched base pairs in duplex DNA have been studied by
time-resolved fluorescence anisotropy decay measurements on a series of duplex oligodeoxynucleotides of
the general type d[CGG(AP)GGC]-d[GCCXCCG], where AP is the fluorescent adenine analogue 2-
aminopurine and X = T, A, G, or C. The anisotropy decay is caused by internal rotations of AP within
the duplex, which occur on the picosecond time scale, and by overall rotational diffusion of the duplex. The
correlation time and angular range of internal rotation of AP vary among the series of AP-X mismatches,
showing that the native DNA bases differ in their ability to influence the motion of AP. These differences
are correlated with the strength of base-pairing interactions in the various AP-X mismatches. The interactions
are strongest with X = T or C. The ability to discern differences in the strength of base-pairing interactions
at a specific site in DNA by observing their effect on the dynamics of base motion is a novel aspect of the
present study. The extent of AP stacking within the duplex is also determined in this study since it influences
the excited-state quenching of AP. AP is thus shown to be extrahelical in the AP-G mismatch. The association
state of the AP-containing oligodeoxynucleotide strand is determined from the temperature-dependent
tumbling correlation time. An oligodeoxynucleotide triplex is formed with a particular base sequence in
a pH-dependent manner.



Absorption and emission spectra
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FIGURE 3: Steady-state fluorescence excitation (at left) and emission
(at right) spectra of 50 uM d[CGG(AP)GGC)-d[GCCTCCG] in 50
mM Tris-HCI, pH 7.4, and 0.15 M NaCl at 20 °C. In the excitation
spectrum, the emission is observed at 380 nm, while in the emission
spectrum the excitation wavelength is 320 nm. The band-pass is 5
nm for both excitation and emission.



3
e

Intensity

mnisotropy

oI

.35

.18

.50

FIGURE 4: Time-resolved emission depolarization of d[CGG(AP)-
GGC]d[GCCGCCG] in 50 mM Tris-HCl, pH 7.4, and 0.15 M NaCl
at 4 °C. The center panel shows the polarized emission intensities
Iy(t) (upper curve) and [, (1) (lower curve). The time-dependent
emission anisotropy is shown in the lower panel. The smooth lines
are best-fit curves generated as described in the text. The upper panel
shows the weighted deviation between the experimental difference
curve, Jy(1) = I, (1), and the best-fit difference curve.



Fitting the data

Table I1I: Anisotropy Decay Parameters®

T(°C) 7, (ps) 7, (ns) P Fay Fo
X (£0.5) (&15) (£0.07) (£0.015) (£0.015) (£0.030)
T 40 60 0.50 0.210 0.127 0.337
30 73 0.65 0.229 0.127 0.356
20 85 0.80 0.227 0.117 0.344
10 100 1.10 0.235 0.106 0.341
4 124 1.70 0.249 0.099 0.348

A(t) = (2/5) [S? + (1 — S*)exp(—t/ )] exp(—t/1c)

Table III: Correlation Time, Order Parameter, and Cone Angle for
Restricted Motion of 2-Aminopurine?

T(°C) i (ps) S by (deg)
X? (£0.5) (£15) (£0.070) (#3)
T 40 68 0.614 44
30 82 0.597 45
20 95 0.583 46
10 110 0.558 48

4 135 0.533 50



Steady-state fluorescence polarization

Instead of measuring the time-dependence of polarization, it is
usually easier to look at the averages, or steady-state values under
constant illumination:

<I”>:T,_?1/IH(t)dt; () :r;l/u(t)dt
0 0

Note that the amount of depolarization will depend on the ratio of
7. (how fast the molecule tumbles) to 7 (how long it takes on
average to fluoresce. Plugging our previous values in (ignoring
internal motion for simplicity for now):

(A = (5/2)(1+1F /1) = (5/2)(1+ Teka T/ Vin)

This is called the Perrin equation.



Orientation by flow birefringence

Another way to create an anistropic distribution
of orientations is illustrated here. Under a flow,
molecules will tend to orient along the flow
direction. As with sedimentation, one can do
an equilibrium experiment (pp. 438-439), where
the external torque coming from the velocity
gradient matches rotational diffusion. Or, one
can do a time-dependent experiment where the
flow is abruptly turned off, and the decay back
to equilibrium is measured (pp. 440-441).




Photobleaching and recovery
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Fluorescence recovery after photobleaching (FRAP) is based on photobleaching the
fluorescent protein within a small region of interest (ROI) in the cell (white circle) by
short, high-intensity laser illumination. Subsequent exchange between the bleached
and non-bleached populations of fluorescent protein in the ROl is monitored by
quantitative time-lapse microscopy and the fluorescence intensity relative to the
pre-bleach period (I/10) is plotted as a function of time. Curve fitting (solid line) can
then be used to determine the effective diffusion coefficient Deff and the mobile and
immobile fractions of protein.



Fluorescence correlation spectroscopy

Here we use fluorescence to
study fluctuations in fluorescence
intensity in small volumes.
Molecular mechanisms that
might give rise to florescence
fluctuations include particle
movements, conformational
changes, chemical or
photophysical reactions. The key
is to have only a small number
of molecules in the observation
volume, since the relative size of
fluctuations goes like N—1/2.
Here, volume is about 1071°
liter. Concentration is between
nanomolar and micromolar.
Hence the number of particles in
the viewing volume is between
0.1 and 1000.




Experimental setup and basic ideas
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In fluorescence correlation spectroscopy (FCS) a small, geometrically defined light
cavity (with a volume smaller than 1 femtoliter) is generated in the sample by
confocal illumination. Only very few tagged proteins are emitting fluorescent light in
this cavity at any particular time. The fluctuations in the fluorescence signal are
recorded (horizontal arrow), from which the autocorrelation function is computed
(vertical arrow). The fluctuations are caused by diffusion of fluorescent molecules
through the cavity or by changes in fluorescence over time caused by chemical reaction
kinetics. From the autocorrelation function the average dwell time (tav) and number
of molecules in the cavity (N ) can be derived. Together with the known size of the
light cavity, this can then be used to determine the diffusion coefficient D of the
fluorescent probe.



Development of an autocorrelation curve
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Two-color fluorescence correlations

D can then be used to evaluate the
[ ————— formation of molecular complexes as the
T &g\ | diffusion of molecular complexes (red and
' green structures) is slower than that of free
protein molecules (green structures)
resulting in a smaller value for D. Chemical
reaction-specific fluctuations are
independent of the size of the light cavity,
in contrast to diffusioncontrolled processes.
By changing the size of the light cavity, the
Y, e rate constants of protein reaction kinetics
can be discriminated from the dwell time of
molecules in the light cavity.




Diffusion analysis in cells
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Figure 15: Various autocorrelation curves demonstrating the enormous difference in motility between
buffer solution and evtosol



Fluorescence resonant energy transfer
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Fluorescence resonance energy transfer (FRET) is a non-radiative process whereby
energy from an excited donor fluorophore is transferred to an acceptor fluorophore
that is within nanometre range. FRET is useful as a photophysical phenomenon to
measure protein interactions as the efficiency E at which Forster-type energy transfer
occurs is steeply dependent on the distance r (nm) between the two fluorophores is
given by: RS/(RS +r®), where Ry is typically between 2 and 6 nm.



Fluorescence resonant energy transfer

(b) (c)
E Donor  Acceptor
em abs
7 Donor/‘ [ Acceptor
abs | \ w em
|
-1 \
[
| |
|
- / | l
J[\v |l
l o ¢ \ d
| / N
: | / | / \Overlap
: | region
I
0.0 } 21 10 e T T T — .l
0.0 1.0 .0 3.
. Wavelength (1)
Figure | r (units of Ry) TiBS



