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Techniques based on rotational motion

What we studied last time probed translational diffusion. There is
another set of experiments that see size and shape through the lens of
rotational motion. We can still use the Einstein-Sutherland equation
D = kBT/f , where now D and f are rotational diffusion and friction
coefficients. A big difference here, though, is that there are no
concentration gradients for rotational motion.
In isotropic solution, all orientations are equally likely, and something
must be done to observe rotational diffusion. As with translation, there
are two broad categories of experiments. In one, the intial distribution is
perturbed, creating a non-isotropic distribution of molecular orientations.
Then the decay back to equilibrium is analyzed. In the second set of
experiments, a force is applied to achieve partial orientation, and we solve
an equilibrium problem where the external torque (which creates an
oriented sample) is balanced by rotational diffusion (which tends to
destroy such orientation).
The first category includes fluorescence depolarization (Chap. D8) and
NMR relaxation (coming later); the second includes electric birefringence
(Chap. D6) and flow birefringence (Chap. D7).



Basics of fluorescence



Polarization in rigid systems

Consider a rigid, isotropic sample. The probability of finding a molecule
with its transition dipole pointing the θ ,φ direction is proportional to
sinθdθdφ . Now excite this with light polarized along the z direction:
the excitation probability is proportional to |µ·E|2, or to cos2 θ . Thus,
the distribution of excited molecules will go like cos2 θ sinθdθdφ .
Normalizing this, we can write the distribution of excited states as

W (θ ,φ ,t) =
[
(3/4π)cos2 θ sinθdθdφ

]
exp(−t/τF )

At a subsequent time, the molecule may emit (fluoresce). Because the
excited molecules are anisotropic, the emitted radiation will also be
anisotropic. The emitted radiation polarized along z will be

I‖ ∝

∫∫
cos2 θW (θ ,φ ,t)dθdφ = (3/4π)exp(−t/τF )

∫∫
cos4 θ sinθdθdφ = (3/5)exp(−t/τF )

Radiation polarized on x (or along y) will be

I⊥ ∝

∫∫
sin2

θ cos2 φW (θ ,φ ,t)dθdφ = (3/4π)exp(−t/τF )
∫∫

cos2 φ cos2 θ sin3
θdθdφ = (1/5)exp(−t/τF )



Fluorescence polarization: time dependence

There are two conventional ways to express this, as polarization or as
anisotropy:

P = (I‖− I⊥)/(I‖+ I⊥); A = (I‖− I⊥)/(I‖+2I⊥)

If there is no motion, then P(0) = 1/2 and A(0) = 2/5. If the emission
dipole moment is aligned at a angle ξ relative to the absorption dipole,
so that cosξ = µ ·µ ′, then

P = (3cos2 ξ −1)/(cos2 ξ +3); A = (3cos2 ξ −1)/5 = (2/5)P2(cosξ )

Now, for a non-rigid system, if we measure the time dependence of
polarization of fluorescence, it will look like a time correlation function:

A(t) = (2/5)〈P2(µ(0) ·µ(t)〉exp(−t/τF ) = (2/5)〈P2(cosξ (t))〉exp(−t/τF )



Rotational diffusion

In a liquid, the molecule will suffer many small
reorienting collisions with the solvent molecules,
and hence u should execute a “random walk” on
the surface of the unit sphere. Let f (u,t) be
the probability density of having a molecule
with orientation u at time t; hence
f (u,t)sinθdθdφ is the fraction of molecules in
the solid angle sinθdθdφ . Debye proposed a
diffusion equation:

∂

∂ t
f (u,t) = D∇

2f (u,t) (1)

Let’s use spherical polar coordinates (r ,θ ,φ), where r = 1. The Laplacian
operator is then

∇
2 =

1
sin2

θ

[
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

∂2

∂θ2

]
≡−Î 2 (2)

∂

∂ t
f (u,t) =−DÎ 2f (u,t) (3)



Solving the rotational diffusion problem

The formal solution of this differential equation is easily written down:

f (u,t) = exp(−DtÎ 2)f (u,0) (4)

They can be written in terms of the eigenfunctions of Î 2, which are the
spherical harmonics:

Î 2Ylm(u) = l(l +1)Ylm(u) (5)

exp(−DtÎ 2)Ylm(u) = exp(−l(l +1)Dt)Ylm(u)

The particular solution to Eq. 3 we want here corresponds to an initial
condtion where u is sharply peaked at u0:

f (u,0) =

(
1
4π

)
δ (u−u0) =

(
1
4π

)
∑
lm

Ylm(u0)Y ∗lm(u) (6)

where the final equality exploits the closure relation of the sphereical
harmonics. Combining this with Eq. 4 gives:

f (u,t) = ∑
lm

exp(−l(l +1)Dt)Ylm(u0)Y ∗lm(u) (7)



Time-correlation functions

The time-correlation functions needed for NMR relaxation only require
the second moments of this distribution. If Fn(u)∼ (4π/5)1/2Y2n(u):

< Fn(u0)F ∗n (u) > ∼
(

1
4π

)∫
d2u0

∫
d2u

[
4π

5

]
Y2n(u0)Y ∗2n(u)

=

(
1
5

)
exp(−6Dτ)

Hence, for a rigid molecule undergoing such isotropic Brownian rotational
motion, the normalized Fn time-correlation functions for all internuclear
vectors all decay in the same way, as

C rot(τ) =< P2(u0 ·u) >=
n=2

∑
n=−2

< Fn(uo)F ∗n (u) >= exp(−τ/τc) (8)

where the time constant τc is 1/6D = Vhη/kBT . (For later): its Fourier
transform is then a Lorentzian:

j rot(ω)≡ 2
5

∫
∞

0
(cosωt)C (t)dt =

(
2
5

)
τc

1+ω2τ2
c

(9)



Fluorescence depolarization in DNA



Absorption and emission spectra



Time-dependence of polarization:



Fitting the data

A(t) = (2/5)
[
S2 +(1−S2)exp(−t/τi )

]
exp(−t/τc)



Steady-state fluorescence polarization

Instead of measuring the time-dependence of polarization, it is
usually easier to look at the averages, or steady-state values under
constant illumination:

〈
I‖
〉

= τ
−1
F

∞∫
0

I‖(t)dt; 〈I⊥〉= τ
−1
F

∞∫
0

I⊥(t)dt

Note that the amount of depolarization will depend on the ratio of
τc (how fast the molecule tumbles) to τF (how long it takes on
average to fluoresce. Plugging our previous values in (ignoring
internal motion for simplicity for now):

〈A〉−1 = (5/2)(1+ τF/τc) = (5/2)(1+ τFkBT/Vhη)

This is called the Perrin equation.



Orientation by flow birefringence

Another way to create an anistropic distribution
of orientations is illustrated here. Under a flow,
molecules will tend to orient along the flow
direction. As with sedimentation, one can do
an equilibrium experiment (pp. 438-439), where
the external torque coming from the velocity
gradient matches rotational diffusion. Or, one
can do a time-dependent experiment where the
flow is abruptly turned off, and the decay back
to equilibrium is measured (pp. 440-441).



Photobleaching and recovery

Fluorescence recovery after photobleaching (FRAP) is based on photobleaching the
fluorescent protein within a small region of interest (ROI) in the cell (white circle) by
short, high-intensity laser illumination. Subsequent exchange between the bleached
and non-bleached populations of fluorescent protein in the ROI is monitored by
quantitative time-lapse microscopy and the fluorescence intensity relative to the
pre-bleach period (I/I0) is plotted as a function of time. Curve fitting (solid line) can
then be used to determine the effective diffusion coefficient Deff and the mobile and
immobile fractions of protein.



Fluorescence correlation spectroscopy

Here we use fluorescence to
study fluctuations in fluorescence
intensity in small volumes.
Molecular mechanisms that
might give rise to florescence
fluctuations include particle
movements, conformational
changes, chemical or
photophysical reactions. The key
is to have only a small number
of molecules in the observation
volume, since the relative size of
fluctuations goes like N−1/2.
Here, volume is about 10−15

liter. Concentration is between
nanomolar and micromolar.
Hence the number of particles in
the viewing volume is between
0.1 and 1000.



Experimental setup and basic ideas

In fluorescence correlation spectroscopy (FCS) a small, geometrically defined light
cavity (with a volume smaller than 1 femtoliter) is generated in the sample by
confocal illumination. Only very few tagged proteins are emitting fluorescent light in
this cavity at any particular time. The fluctuations in the fluorescence signal are
recorded (horizontal arrow), from which the autocorrelation function is computed
(vertical arrow). The fluctuations are caused by diffusion of fluorescent molecules
through the cavity or by changes in fluorescence over time caused by chemical reaction
kinetics. From the autocorrelation function the average dwell time (tav) and number
of molecules in the cavity (N ) can be derived. Together with the known size of the
light cavity, this can then be used to determine the diffusion coefficient D of the
fluorescent probe.



Development of an autocorrelation curve



Two-color fluorescence correlations

D can then be used to evaluate the
formation of molecular complexes as the
diffusion of molecular complexes (red and
green structures) is slower than that of free
protein molecules (green structures)
resulting in a smaller value for D. Chemical
reaction-specific fluctuations are
independent of the size of the light cavity,
in contrast to diffusioncontrolled processes.
By changing the size of the light cavity, the
rate constants of protein reaction kinetics
can be discriminated from the dwell time of
molecules in the light cavity.



Diffusion analysis in cells



Fluorescence resonant energy transfer

Fluorescence resonance energy transfer (FRET) is a non-radiative process whereby
energy from an excited donor fluorophore is transferred to an acceptor fluorophore
that is within nanometre range. FRET is useful as a photophysical phenomenon to
measure protein interactions as the efficiency E at which Förster-type energy transfer
occurs is steeply dependent on the distance r (nm) between the two fluorophores is
given by: R6

0/(R6
0 + r6), where R0 is typically between 2 and 6 nm.



Fluorescence resonant energy transfer


