Principles of protein phosphorylation Biophysical Chemistry 1, Fall 2010

Signalling "cascades"

Structural biology of phosphorylation
Web assignment: http://pkr.genomics.purdue.edu

Kinases and phosphatases

Signalling overview

Cells are way too complex!

Rous sarcoma virus (RSV)

- gag encodes capsid proteins
- <u>pol</u> encodes reverse transcriptase
- env encodes envelope proteins
- <u>src</u> encodes a <u>tyrosine kinase</u> that attaches phosphate groups to the amino acid <u>tyrosine</u> in host cell proteins

Mutations, viruses and cancer

- v-src lacks the C-terminal inhibitory phosphorylation site (tyrosine-527), and is therefore constitutively active as opposed to normal src (c-src)
- Continuous cell profileration tumor

Biophysics of signalling

Signalling by reorientation

Order/disorder transitions

Src/SH2 interactions: binding vs release

Expected conformational effects

Mutational analysis

Looking for analogues

FIGURE 6 Chemical structures of pTyr and various analogues including phosphatase-resistant bioisosteres of the phosphate moiety, such as phosphonates, sulfonates, and carboxylates.

Expected conformational effects

Table IV Structure-Activity Relationships of Phosphopeptide Inhibitors of Src SH2 Binding ¹⁶		
		Src SH2 Binding
Compound	Peptide Structure	Relative Potency
2	Ac-pTyr-Glu-Glu-Ile-Glu	1.0
	pY pY+1 pY+2 pY+3	$(IC_{50} = 0.7 \mu M)$
3	Ac-Tyr-Glu-Glu-Ile-Glu	< 0.001
4	Ac-Pmp-Glu-Glu-Ile-Glu	0.025
5	Ac-F ₂ Pmp-Glu-Glu-Ile-Glu	0.3
6	Ac-Phe(p-OPSO ₂ H ₂)-Glu-Glu-Ile-Glu	0.6
7	Ac-Tic(p-OPO ₃ H ₂)-Glu-Glu-Ile-Glu	0.25
8	Ac-Phe(p-CH ₂ SO ₃ H)-Glu-Glu-Ile-Glu	0.003
9	Ac-D/L-Phe(p-CH2CO2H)-Glu-Glu-Ile-Glu	0.001
10	Ac-Gln-Phe(p-OCH[CO ₂ H] ₂)-Glu-Glu-Ile-Pro-NH ₂	~0.03
		$(IC_{50} = 22 \ \mu M)$

"Src Homology-2 Domains: Structure, Mechanisms, and Drug Discovery", Sawyer, *Biopolymers*, **47**, 243-63 (1998)