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1 Frictional coefficients

Consider a particle moving with velocity v under the influence of some external force F (say a graviational
or electrostatic external force). In addition to the external force, there is a viscous drag inhibiting the
motion, which is proportional to the velocity:

F− fv = m(dv/dt)

If the velocity at time 0, v0 is parallel to the applied force F (here assumed to be constant), then the
linear differential equation is easy to solve:

v(t) = (F/f) + [v0 − (F/f)]e−ft/m

The velocity decays (quickly, if you plug in numbers) to a final value F/f which is linear in the applied
force.

2 Relation between friction and molecular size and viscosity

The frictional drag must depend on particle size, and on the viscosity of the medium (typically
water, which has a viscosity η of about 0.01 poise = 0.01 g cm−1 s−1). Dimensional analysis
can help here: suppose for a sphere of radius r:

f ∝ ηxry

Now f has units of g s−1. The only possible values for x and y are 1, so that f ∝ ηr. For a
sphere, where the molecules of the solvent “stick” to the surface, messy algebra can find Stokes
law:

fsph = 6πηr

3 Size and shape dependence of friction coefficients

It is common to compare the frictional coefficients of other simple shapes to that of a sphere of
the same volume:
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Note: macromolecules always show a little more friction than they “should”, based on their size and shape.
This is because (roughly speaking!) they drag along a certain amount of water with them (a “hydration layer”).

4 (Ultra)centrifuge: simplest idea

Figure 1: Ultracentrifuge

The centrifugal force on the particles is mω2x , where ω is the
rotor speed and x is the distance from the center of the rotor. The
terminal velocity should equal this force divided by the friction
coefficient. It is typical in the literature to report the Svedberg
coefficient s = v/(ω2x), which has units of time. Measurements
are reported in Svedberg units, where 1S=10−13 s. Hence the
Svedberg coefficient is proportional to the mass of the particle.
In simple terms, you can just measure the velocity, and com-

pare s of the sample to that for standards of known molecular
weight. However, realistically, the particles in the sample cell are
experiencing both driven motion (because of the rotor speed),
frictional forces, and diffusion (natural spreading because of con-
centration gradients. We need to examine diffusion first, then

come back to the centrifuge problem later.

5 Fick’s first and second laws of diffusion

(Definition The flux J is the mass transported across a boundary per second, divided by the
area of the boundary. In the figure, the mass in the little box is cAdx (concentration times
volume). Flux J is this mass divided by Adt; hence J = c(dx/dt) = cv, where v is the velocity
of the flow.)
Consider the tiny volume shown in the figure. The rate of mass transport from left to right

through the zone must be proportional to the concentration at the left, c(x), and inversely
proportional to the thickness of the zone, dx. Transport in the opposite direction is proportion
to c(x+ dx)/dx. The net rate is given by Fick’s first law of diffusion:

J = [Dc(x)−Dc(x+ dx)] /dx = −D(∂c/∂x)t (1)
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Now, consider the change in mass inside the volume. This is just dm/dt = J(x)−J(x+dx). In
terms of concentrations, this is dc/dt = (1/V )(dm/dt) = (1/dx)(dm/dt), where we have taken
A to be a unit area. Combining these:

(dc/dt)x = [J(x)− J(x+ dx)]/dx = −(∂J/∂x)t (2)

Combining with Fick’s first law, we get Fick’s second law of diffusion:

(dc/dt)x = −∂ (−D(∂c/dx)/dx) = D
(
∂2c/∂x2

)
t

(3)

6 Solution to the diffusion equations

If you start with a spike (Dirac delta function) of material, it will spread by diffusion according
to c(x, t) =W0 exp(−x2/4Dt)/

√
4πDt, where W0 is the total mass.

7 Diffusion in the presence of an external force

Remember that a low Reynolds number, and accelerations caused by external forces are short-
lived, and one quickly comes to a terminal velocity v = F/f , where F is the external force and
f is the friction coefficent. In the presence of both an external force and diffusion (Fick’s first
law):

J = −D (∂c/∂x) + cF/f (4)

By virtue of Eq. 2, we get the Smoluchowski equation:

(∂c/∂t) = D
(
∂2c/∂x2

)
− (F/f) (∂c/∂x) (5)

Now, suppose you come to equilibrium (J = 0) where diffusion matches the external force
(sedimentation equilibrium, say). Here gravity (or centrifugal force) is pulling particles down,
creating a concentration gradient (higher concentration at the bottom). But diffusion works in
the opposite direction, trying to equalize concentrations, and hence pulling particles up.
Rearranging Eq. 4 with J = 0 gives

D
dc

c
=

F

f
dx
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Integrate both sides of this equation from x = 0 (top of the beaker) to position x, and set
w = −

∫
Fdx where w is the (reversible) work, minus sign because gravity pulls downward.

Then

D ln
c(x)

c(0)
=
−w
f
, or c(x) = c(0) exp(−w(x)/fD)

But at equilibrium we must also have the Boltzmann distribution law, so fD = kT , or
D = kT/f , which is the Einstein-Smoluchowski equation. It is an example of a fluctuation-
dissipation relation, connecting fluctuations (D) with friction, (dissipation, f).

8 Measuring sedmentation velocities

Figure 2: sedimentation velocities

The graph shows scans across the centrifuge
cell, recording the absorbance at 280 nm ver-
sus position within the cell. These scans were
taken starting at 13 minutes after initiating
a run at 45,000 rpm (the black data set in
the graph), and then every ~12 minutes there-
after (red, green, cyan, etc.). In the first data
set the sedimentation of the antibody has al-
ready depleted its concentration at the left
and formed a sedimentation boundary.
At later times in the run the depleted region

expands and the boundary moves away from
the center of the rotor, until by the time of
the last data set the concentration of antibody
has dropped to essentially zero throughout the
upper half of the cell.

Figure 3: distribution of sizes

What we often want to know is how much
material is sedimenting at various sedimen-
tation coefficients. By taking many scans
close together in time, subtracting them in
pairs, and doing some mathematical manipu-
lation these data can be transformed into the
sedimentation coefficient distribution, g(s*),
which is shown at the right.
This distribution resembles a chromatogram,

and the area under each peak gives the to-
tal amount of that species. For this antibody
sample we see only one distinct peak, cen-
tered at a sedimentation coefficient of ~6.5
S, which corresponds to the native antibody
’monomer’. A sedimentation coefficient of 6.5
S is actually rather low for a 150 kDa species,
which is consistent with high hydrodynamic friction from its highly asymmetric, non-globular
’Y’ shape. The red curve is a fit of these data as a single species. This fit clearly fails to account
for the data over the region from 8-12 S, indicating the presence of some dimer and possibly also
some trimer.
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This example illustrates some of the main ideas of Sedfit: loading data from the entire sedi-
mentation process, use of systematic noise decomposition (and subtraction), modeling with finite
element solutions of the Lamm equation. If we expand the scale of the continuous sedimenta-
tion distribution c(s) with maximum entropy regularization shown above, it can be seen that
the c(s) analysis reveals the presence of several oligomeric species and a smaller species. See
http://www.analyticalultracentrifugation.com
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