Notes on the Boltzmann distribution
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1 Recalling some simple thermodynamics

In many ways, the most basic thermodynamic quantity is the equilibrium constant, which in
its simplest form, is a ratio of concentrations, or probabilities:
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We use here the fact that concentrations are proportional to the probability of being in a
certain state. A fundamental conclusion from thermodynamics relates the equilibrium con-
stant to free energy difference between A and B:
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By itself, this is not of much use, since it just substitutes one variable for another. But
thermodynamics adds an additional relation:
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where the enthalpy H is related to heat exchange and the entropy S always increases for
spontaneous processes (if we consider the entropy of everything, both the system we are
studying and its surroundings.)

2 Molecular interpretation of entropy

Suppose with have a system with a set of possible states {i} , such that the probability of
finding a particular state is p;. Now we postulate that the entropy of such a system is:

S = —kZpilnpi (3)
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We can show that S is a measure of randomness. For example, if only one state is
populated, and all the rest have zero probability, then S = 0 for this very non-random state.
Similarly, if there are a total of W possible states, and each has equal probability p; = 1/W,
then S = kInW, (Eq. 5.1 in your text) and this is the largest entropy one can get. We can
show this by considering the change in entropy upon changing the populations:
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Now we know that probability must be conserved, so that }_ p; = 1, or

dei =0 5)

Hence the first term in Eq. 4 (with the “1”) vanishes; furthermore, if you set In p; to
be independent of i, it can be taken outside of the sum, and you can use Eq. 5 again to show
that dS = 0, and hence that the entropy is maximized by a uniform distribution.

3 The canonical distribution

Now, instead of having a single, isolated system (where the maximum entropy comes from
uniform distribution), we want to consider a large collection (“ensemble”) of identical sub-
systems, which can transfer energy amongst themselves. Now, in addition to the constraint
on conservation of probability (Eq. 5), there is a constraint that the total internal energy
must be conserved: }_ p;E; = U (see Eq. 5.1 in Chap. III of the Slater handout or Eq. 5.12 in
MDF), or

ZEidpi =0 (6)

Now, we want to maximize the entropy (find the most random state), subject to both
conservation equations 5 and 6. We already saw that we can drop the first term in Eq. 4,
and we can set 4S = 0 for a maximum:

as = —k Zln pidp;i =0 (7)

Here, think of Inp; as the coefficient of the dp; terms which are to be varied, and
note that all three Equations, 5, 6 and 7, have a similar form, with a sum where the dp;
terms are multiplied by different coefficients. The only way to satisfy all three equations for
arbitrary values of the dp; variables is if In p; is a linear combination of the coefficients in
the constraint equations:
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(Proof: just substitute Eq. 8 into Eq. 7, and simplify using Egs. 5 and 6).
Some notes:

1. The minus sign in Eq. 8 is for convenience: 8 can be any constant, and using a minus
sign here rather than a plus sign will make  be positive later on. Also note that «
and S are (initially) unknown constants, often called Lagrange multipliers. There is an
elegant discussion of these on pp. 68-72 of MDFE.

2. You can also come to a similar conclusion starting from Eq. 3, by noting that entropy is
additive (or “extensive”). Consider two uncorrelated systems that have a total num-
ber of states W; and W,. The total number of possibilities for the combined system is
W] Wz. Then:
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Basically, the logarithm function is the only one that combines addition and multipli-
cation in this fashion. For a more detailed discussion, see Appendix E of MDF.

3. Think a little more about variations in the internal energy, U = ), p;E;: then the full
differential is:

dU =Y Eidp;+ ) _ pidE;
i i

In the second term, the p; are unchanged; hence the entropy is unchanged; hence
there is no heat transfer; hence this corresponds to work performed, say by an exter-
nal potential that changes the individual E; values. The first term (rearrangement of
probabilities among the various possible states) then corresponds to heat exchange.
Since the probability changes dp; are infinitessimal, this must be a reversible heat ex-
change.

4 The connection to classical thermodynamics

All that remains is to figure out what & and  must be. Getting « is easy by the conservation
of total probability:
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where Q (often also denoted by Z) is the partition function:

Z=Y eFh (10)
j

There are a variety of ways to determine . One way depends on some additional
results from thermodynamics. Substitute Eq. 8 into Eq. 7:
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Here we have removed the term involving a by our usual arguments involving con-
servation of probability; next we note that dp;E; is the amount of heat energy exchanged
when the probabilities are changed by dp;; since these are infinitesimal changes in proba-
bility, the heat exchanged is also infinitesimal, and hence must be reversible. Since dS =

dq,e0/ T, we find that| B = 1/kT |, and hence:
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What we have shown is that this Boltzmann distribution maximizes the entropy of a
system in thermal equilibrium with other systems kept at a temperature T.



5 Some more connections to thermodynamics

We have introduced the Gibbs free energy, G = H — TS, which is useful for the most com-
mon task of interpreting experiments at constant pressure. There is an analogous “con-
stant volume” free energy A (usually called the Helmholtz free energy) which is defined as
A = U —TS. Itis instructive to use Eq. 11 to compute A:

A = U-TS
= ZpiEi+kTZpilnpi
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or

A= —kTInZ] (12)

(Note that G = A + pV, and that for (nearly) incompressible liquids there is (almost)
no pressure-volume work. Hence, in liquids G ~ A, just like H ~ U.)

The free energy is an extremely important quantity, and hence the partition function
Z is also extremely important. Other thermodynamic formulas follow:

A = U-TS=—-kTlnz

S = —(dA/3T)y =kInZ +kT(dInZ/dT)y (13)
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6 Connections to classical mechanics

We have implicitly been considered a discrete set of (quantum) states, E;, and the dimen-
sionless partition function that sums over all states:
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How does this relate to what must be the classical quantity, integrating over all phase
space:

Z. has units of (energy - time)N for N atoms. The Heisenberg principle states (roughly):
ApAq ~ h, and it turns out that we should “count” classical phase space in units of h:

Zg =~ Z /0N

For M indistinguishable particles, we also need to divide by M!. This leads to a discussion
of Fermi, Bose and Boltzmann statistics....



7 Separation of coordinates and momenta

In classical mechanics, with ordinary potentials, the momentum integrals always factor out:

7 = h—SN/e—ﬁpz/Zmdp /e—ﬁV(q)dq

The momentum integral can be done analytically, but will always cancel in a ther-
modynamic cycle; the coordinate integral is often called the configuration integral, Q. The
momentum terms just give ideal gas behavior, and the excess free energy (beyond the ideal
gas) is just

A= —kTInQ

The momentum integrals can be done analytically:

N
Z=QJ[A;% Ai=h/(@2rmkgT)
i=1

8 Molecular partition functions

Ideas in this section come from D.R. Herschbach, H.S. Johnston and D. Rapp, Molecular
Partition Functions in Terms of Local Properties, |. Chem. Phys. 31, 1652-1661 (1959).

N
Q=[1v

i=1
e Overall translation and rotation:

Since there is no potential for translation or rotation, the integration over the “first
five” degrees of freedom always gives V872 (for non-linear molecules).

e Harmonic vibrations:
Consider a non-linear triatomic where U = 1k,(Ar)? + 1k, (Ar')?* 4 1ko(A0)2. Then
we get:

w = V; V2:47'cr2(27rkBT/kr)1/2;
Vs = 27 sin@(27tkpT /k|r' )2 (2rckpT /ke)'/?

V, is a spherical shell centered on atom 1; its thickness is a measure of the average vibrational amplitude
of 1-2 stretching. V3 is a torus with axis along the extension of the 1-2 bond, an a cross section that is
product of a 2-3 stretch amplitude and a 1-2-3 bond bend.

e Building up molecules one atom at a time



TagtE I. Jacobian factors.

Atom Configuration Coordinates Ja
I
a=1 . x,9,% v
a=2s I.—% 712, Oex, Pex dmrn?
a=3s 1 2 3 23, P12, 128’ 725®
—o o
2 .
'./\3 723, 123, Pex 2wry? singuzs
#23, 713, bex 27 (ragrin/112)
a=4 734, basa, buse’ 734?

3

=
£

3
3
2

2

2
[
12 3 4
—s—o—o

2 4
N 734, P2ss, T

3
4
>/
2
a4
!
2
4
[
AL
5=t~
4
! 9
3

24, Pros, Pa2e

T4, 114, T34

a4, Pr2s, 0

714, 734, 0

7342 Singhaa

ras?/singsa

(rurss/riare) (enxes. en) ™!

7242 cos@/cosyars

724/ [Sindpras— (1 €. €3) tand]

a For =2 and a=3 the angles @y and ey are the external rotation angles; upon integration these give rise to the factors 47 and 2 in J4.

e Quantum corrections
The classical expressions for V; will fail if a dimension becomes comparable to or less
than A;. For a harmonic oscillator, let u; = hiw/kpT; then the quantum corrections

will be:

hence isotope effects are quantum dynamical effects.

3N—-6

Qq/Qc = H I'(u;)
i=1

T(u) = uexp(—u/2)(1—e )t

For frequencies less than 300 cm 1, the error is less than 10%, but can become sub-
stantial at higher frequencies. Furthermore, 1 is mass dependent, whereas Q. is not:

e An equilibrium constant involves the difference of two free energies, or the ratio of
two partition functions:

Q(products) T Vi(products)

Q(reactants) i+ Vi(reactants)



