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1 Recalling some simple thermodynamics

In many ways, the most basic thermodynamic quantity is the equilibrium constant, which in
its simplest form, is a ratio of concentrations, or probabilities:

KAB =
[A]

[B]
=

pA

pB
(1)

We use here the fact that concentrations are proportional to the probability of being in a
certain state. A fundamental conclusion from thermodynamics relates the equilibrium con-
stant to free energy difference between A and B:

∆ABGo = −RT ln KAB (2)

By itself, this is not of much use, since it just substitutes one variable for another. But
thermodynamics adds an additional relation:

G = H − TS
(

dG
dT

)
p
= −S

where the enthalpy H is related to heat exchange and the entropy S always increases for
spontaneous processes (if we consider the entropy of everything, both the system we are
studying and its surroundings.)

2 Molecular interpretation of entropy

Suppose with have a system with a set of possible states {i} , such that the probability of
finding a particular state is pi. Now we postulate that the entropy of such a system is:

S = −k ∑
i

pi ln pi (3)

We can show that S is a measure of randomness. For example, if only one state is
populated, and all the rest have zero probability, then S = 0 for this very non-random state.
Similarly, if there are a total of W possible states, and each has equal probability pi = 1/W,
then S = k ln W, (Eq. 5.1 in your text) and this is the largest entropy one can get. We can
show this by considering the change in entropy upon changing the populations:

dS
dpi

= −k ∑
i

(
pi

d ln pi

dpi
+ ln pi

)
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or

dS = −k ∑
i
(1 + ln pi)dpi (4)

Now we know that probability must be conserved, so that ∑ pi = 1, or

∑
i

dpi = 0 (5)

Hence the first term in Eq. 4 (with the “1”) vanishes; furthermore, if you set ln pi to
be independent of i, it can be taken outside of the sum, and you can use Eq. 5 again to show
that dS = 0, and hence that the entropy is maximized by a uniform distribution.

3 The canonical distribution

Now, instead of having a single, isolated system (where the maximum entropy comes from
uniform distribution), we want to consider a large collection (“ensemble”) of identical sub-
systems, which can transfer energy amongst themselves. Now, in addition to the constraint
on conservation of probability (Eq. 5), there is a constraint that the total internal energy
must be conserved: ∑ piEi = U (see Eq. 5.1 in Chap. III of the Slater handout or Eq. 5.12 in
MDF), or

∑
i

Eidpi = 0 (6)

Now, we want to maximize the entropy (find the most random state), subject to both
conservation equations 5 and 6. We already saw that we can drop the first term in Eq. 4,
and we can set dS = 0 for a maximum:

dS = −k ∑
i

ln pidpi = 0 (7)

Here, think of ln pi as the coefficient of the dpi terms which are to be varied, and
note that all three Equations, 5, 6 and 7, have a similar form, with a sum where the dpi
terms are multiplied by different coefficients. The only way to satisfy all three equations for
arbitrary values of the dpi variables is if ln pi is a linear combination of the coefficients in
the constraint equations:

ln pi = α− βEi (8)

(Proof : just substitute Eq. 8 into Eq. 7, and simplify using Eqs. 5 and 6).
Some notes:

1. The minus sign in Eq. 8 is for convenience: β can be any constant, and using a minus
sign here rather than a plus sign will make β be positive later on. Also note that α
and β are (initially) unknown constants, often called Lagrange multipliers. There is an
elegant discussion of these on pp. 68-72 of MDF.

2. You can also come to a similar conclusion starting from Eq. 3, by noting that entropy is
additive (or “extensive”). Consider two uncorrelated systems that have a total num-
ber of states W1 and W2. The total number of possibilities for the combined system is
W1W2. Then:

2



S = k ln(W1W2) = k ln W1 + k ln W2 = S1 + S2 (9)

Basically, the logarithm function is the only one that combines addition and multipli-
cation in this fashion. For a more detailed discussion, see Appendix E of MDF.

3. Think a little more about variations in the internal energy, U = ∑i piEi: then the full
differential is:

dU = ∑
i

Eidpi + ∑
i

pidEi

In the second term, the pi are unchanged; hence the entropy is unchanged; hence
there is no heat transfer; hence this corresponds to work performed, say by an exter-
nal potential that changes the individual Ei values. The first term (rearrangement of
probabilities among the various possible states) then corresponds to heat exchange.
Since the probability changes dpi are infinitessimal, this must be a reversible heat ex-
change.

4 The connection to classical thermodynamics

All that remains is to figure out what α and β must be. Getting α is easy by the conservation
of total probability:

eα =
1
Z

or α = − ln Z

where Q (often also denoted by Z) is the partition function:

Z = ∑
j

e−βEj (10)

There are a variety of ways to determine β. One way depends on some additional
results from thermodynamics. Substitute Eq. 8 into Eq. 7:

dS = −k ∑
i

dpi (α− βEi) = kβ ∑
i

dpiEi = kβdqrev

Here we have removed the term involving α by our usual arguments involving con-
servation of probability; next we note that dpiEi is the amount of heat energy exchanged
when the probabilities are changed by dpi; since these are infinitesimal changes in proba-
bility, the heat exchanged is also infinitesimal, and hence must be reversible. Since dS =

dqrev/T, we find that β = 1/kT , and hence:

pi =
e−βEi

Z
(11)

What we have shown is that this Boltzmann distribution maximizes the entropy of a
system in thermal equilibrium with other systems kept at a temperature T.
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5 Some more connections to thermodynamics

We have introduced the Gibbs free energy, G = H − TS, which is useful for the most com-
mon task of interpreting experiments at constant pressure. There is an analogous “con-
stant volume” free energy A (usually called the Helmholtz free energy) which is defined as
A = U − TS. It is instructive to use Eq. 11 to compute A:

A = U − TS
= ∑

i
piEi + kT ∑

i
pi ln pi

= ∑
i

e−βEi

Z
Ei + kT ∑

i

e−βEi

Z
(−βEi − ln Z)

= ∑
i

e−βEi

Z
(Ei − Ei − kT ln Z)

or

A = −kT ln Z (12)

(Note that G = A + pV, and that for (nearly) incompressible liquids there is (almost)
no pressure-volume work. Hence, in liquids G ' A, just like H ' U.)

The free energy is an extremely important quantity, and hence the partition function
Z is also extremely important. Other thermodynamic formulas follow:

A = U − TS = −kT ln Z
S = −(∂A/∂T)V = k ln Z + kT(∂ ln Z/∂T)V (13)

U = −(∂ ln Z/∂β); CV = T
(

∂2(kT ln Z)
∂T2

)

6 Connections to classical mechanics

We have implicitly been considered a discrete set of (quantum) states, Ei, and the dimen-
sionless partition function that sums over all states:

ZQ = ∑
i

e−βEi

How does this relate to what must be the classical quantity, integrating over all phase
space:

ZC =
∫

e−βH(p,q)dpdq

Zc has units of (energy · time)3N for N atoms. The Heisenberg principle states (roughly):
∆p∆q ' h, and it turns out that we should “count” classical phase space in units of h:

ZQ ' Zc/h3N

For M indistinguishable particles, we also need to divide by M!. This leads to a discussion
of Fermi, Bose and Boltzmann statistics....
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7 Separation of coordinates and momenta

In classical mechanics, with ordinary potentials, the momentum integrals always factor out:

Z = h−3N
∫

e−βp2/2mdp
∫

e−βV(q)dq

The momentum integral can be done analytically, but will always cancel in a ther-
modynamic cycle; the coordinate integral is often called the configuration integral, Q. The
momentum terms just give ideal gas behavior, and the excess free energy (beyond the ideal
gas) is just

A = −kT ln Q

The momentum integrals can be done analytically:

Z = Q
N

∏
i=1

Λ−3
i ; Λi = h/(2πmikBT)

8 Molecular partition functions

Ideas in this section come from D.R. Herschbach, H.S. Johnston and D. Rapp, Molecular
Partition Functions in Terms of Local Properties, J. Chem. Phys. 31, 1652-1661 (1959).

Q =
N

∏
i=1

Vi

• Overall translation and rotation:
Since there is no potential for translation or rotation, the integration over the “first
five” degrees of freedom always gives V8π2 (for non-linear molecules).

• Harmonic vibrations:
Consider a non-linear triatomic where U = 1

2 kr(∆r)2 + 1
2 kr′(∆r′)2 + 1

2 kθ(∆θ)2. Then
we get:

V1 = V; V2 = 4πr2(2πkBT/kr)
1/2;

V3 = 2πr′ sin θ(2πkBT/k|r′)1/2(2πkBT/kθ)
1/2

V2 is a spherical shell centered on atom 1; its thickness is a measure of the average vibrational amplitude
of 1-2 stretching. V3 is a torus with axis along the extension of the 1-2 bond, an a cross section that is
product of a 2-3 stretch amplitude and a 1-2-3 bond bend.

• Building up molecules one atom at a time
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• Quantum corrections
The classical expressions for Vi will fail if a dimension becomes comparable to or less
than Λi. For a harmonic oscillator, let ui = h̄ω/kBT; then the quantum corrections
will be:

Qq/Qc =
3N−6

∏
i=1

Γ(ui)

Γ(u) = u exp(−u/2)(1− e−u)−1

For frequencies less than 300 cm−1, the error is less than 10%, but can become sub-
stantial at higher frequencies. Furthermore, u is mass dependent, whereas Qc is not:
hence isotope effects are quantum dynamical effects.
• An equilibrium constant involves the difference of two free energies, or the ratio of

two partition functions:

Q(products)
Q(reactants)

= ∏
i

Vi(products)
Vi(reactants)
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