
WORKING DRAFT WORKING DRAFT WORKING DRAFT

_R_D_B: _a _R_e_l_a_t_i_o_n_a_l _D_a_t_a_b_a_s_e _M_a_n_a_g_e_m_e_n_t _S_y_s_t_e_m

Walter V. Hobbs

$Id: RDB.er,v 2.3 1993/03/31 16:43:48 hobbs Exp $

(blank page)

- 1 -

I. INTRODUCTION

A good question one could ask is "With all the relational database

management systems available today, why do we need another one?" There

are five reasons. They are:

1. RDB is easy to use by non-computer people. The concept is

straight forward and logical. To select rows of data, the ’row’

operator is used; to select columns of data, the ’column’

operator is used.

2. The data is highly portable to and from other types of

machines, like Macintoshes or MSDOS computers.

3. The system will run on any UNIX machine (that has the PERL

Programming Language).

4. The system can work on intermediate data, which will later be

put into a commercial RDBMS, like INGRES.

5. RDB essentially has no arbitrary limits, and can work where

INGRES can’t. For example there is no limit on data field

size, the number of columns, or file size.

A more through discussion of why this type of relational database

structure makes sense is found in the book, "UNIX Relational Database

Management", Reference #2.

It is assumed that the reader has at least a minimum knowledge of

the UNIX Operating System, including knowledge of Input/Outout

redirection (e.g., STDIN, STDOUT, pipes).

The RDB system was implemented in the PERL programming language on

a SUN Sparc I computer.

This document presents information in the following order: The DATA

section describes the structure of the data, with examples. There is a

general discussion about operators in the section on OPERATORS, followed

by several sub-sections, one for each operator in alphabetic order.

Each has detailed instructions for use, and examples. There are

- 2 -

sections describing selection of information using multiple operators,

producing reports, and generating new rdbtables (data files in RDB

format).

- 3 -

II. DATA (RDBTABLE)

The data is contained in regular UNIX, ASCII files and therefore

can be manipulated by regular UNIX utilities, e.g. grep, ls, wc, mv, cp,

cat, more, less, head, RCS, and editors like the RAND editor ’e’, vi,

etc. A good way to view the data of course, would be to use the RDB

operator that prints such datafiles ’ptbl’.

The relation, or table structure is achieved by separating the

columns with ASCII TAB characters, and terminating the rows with ASCII

NEWLINE characters. That is, each row of data in a file contains the

data values (a data field) separated by TAB characters and terminated

with a NEWLINE character. Therefore a fundamental rule is that data

values must NOT contain TAB characters.

The first section of the file, called the header, contains the file

structure information used by the operators. The header also contains

optional embedded documentation relating to the entire datafile (table

documentation) and/or each data column (column documentation). The rest

of the file, called the body, contains the actual data values. A file

of data, so structured, is said to be an ’rdbtable’.

The header consists of two or more lines. There is an optional

number (zero or more) of lines of table documentation followed by

exactally two lines that contain the structure information: the column

name row and the column definition row. The table documentation lines

start with either a sharp sign (#) followed by a space character, or one

or more space characters followed by a sharp sign (#). The rest of each

line may contain any documentation desired. Note that the table

documentation lines are the only lines in an rdbtable that are not

required to conform to the table structure defined above. The fields in

the column name row contain the names of each column. The fields in the

column definition row contain the data definitions and optional column

documentation for each column.

- 4 -

The column names are case sensitive, i.e. ’COUNT’ is different from

’Count’. The guideline for characters that may be used in column names

is that alphabetic, numeric, and non-alphanumeric characters that are

not special to the UNIX shell are good choices. Column names must

include at least one alphabetic character. It is highly recommended

(but not required) that column names start with an alphabetic or numeric

character.

Non-alphanumeric characters that are acceptable in column names are

the percent sign (%) colon (:) at sign (@) equals (=) comma (,) and dot

(.). The sharp sign (#) underscore (_) and dash (-) characters may also

be used but they must not be the first character in a column name. The

TAB character must never be used in column names, nor should internal

spaces or UNIX I/O redirection characters (<,>,|) be used.

The data definitions include column width, data type, and

justification. The column width must be explicitly specified; the

others are optional and are frequently specified by default.

The data definitions are specified by adjacent characters in a

single word. The width of each field is specified by a numeric count.

The type of data is "string", "numeric", or "month". The types are

specified by an ’S’, ’N’, or ’M’ respectively, and the default is type

string. Printout justification is ’left’, or ’right’, and is specified

by an ’<’ or ’>’ character respectively. If not specified, data types

string and month will be left justified and type numeric will be right

justified.

Note that column width is used primarily by the operator ’ptbl’ and

in no way limits the actual data size. It is not an error if some

actual data in a column is wider than the defined width; a listing

produced with ’ptbl’ may be out of alignment however.

The optional documentation for each column follows the data

definition word in the field. There must be one or more space

characters after the data definition word and before the column

documentation; the column documentation may be as long as necessary.

Note that the data definition and the optional column documentation are

contained in a single field in the row.

- 5 -

If the column name and/or column definition rows contain much

information and/or column documentation they can become long and

confusing to read. However the operators ’valid’ and ’headchg’ have

options to print the header contents as a ’template’ file, an organized

list of information about the header.

A sample rdbtable (named sample) that will be used in later

examples is shown in Table 1. The picture in Table 1 is for

illustrative purposes; what the file would actually look like is shown

in Table 2, where a TAB character is represented by ’<T>’ and a NEWLINE

character is represented by ’<N>’.

Table 1

RDBTABLE (SAMPLE)

Table documentation lines. These describe and
identify the rdbtable contents.
They may be read by many normal UNIX utilities,
which is useful to easily identify a file.
May also contain RCS or SCCS control information.
NAME COUNT TYP AMT OTHER RIGHT
6 5N 3 5N 8 8>
Bush 44 A 133 Another This
Hansen 44 A 23 One Is
Jones 77 X 77 Here On
Perry 77 B 244 And The
Hart 77 D 1111 So Right
Holmes 65 D 1111 On Edge

Table 2

RDBTABLE (SAMPLE) ACTUAL CONTENT

Table documentation lines. These describe and<N>
identify the rdbtable contents.<N>
They may be read by many normal UNIX utilities,<N>
which is useful to easily identify a file.<N>
May also contain RCS or SCCS control information.<N>
NAME<T>COUNT<T>TYP<T>AMT<T>OTHER<T>RIGHT<N>
6<T>5N<T>3<T>5N<T>8<T>8><N>
Bush<T>44<T>A<T>133<T>Another<T>This<N>
Hansen<T>44<T>A<T>23<T>One<T>Is<N>
Jones<T>77<T>X<T>77<T>Here<T>On<N>
Perry<T>77<T>B<T>244<T>And<T>The<N>
Hart<T>77<T>D<T>1111<T>So<T>Right<N>

- 6 -

Holmes<T>65<T>D<T>1111<T>On<T>Edge<N>

It is important to note that only actual data is stored in the data

fields, with no leading or trailing space characters. This fact can

(and usually does) have a major effect on the size of the resulting

datafiles (rdbtables) compared to data stored in "fixed field width"

systems. The datafiles in RDB are almost always smaller, sometimes

dramatically smaller.

- 7 -

III. OPERATORS

The operators are separate program modules that each perform a

unique function on the data. They can be grouped into data movers,

report generators, and utilities.

The data movers are operators that extract or rearrange the data in

some way. They each read an rdbtable via STDIN and write a rdbtable via

STDOUT and so are frequently connected using the UNIX pipe function to

form a larger task. Each operator in such a "pipeline" style of

operation gets its input from the output of the previous operator in the

"pipeline". The data movers include:

row - Selects rows based on arbitrary expressions.

column - Selects columns by name, outputs columns in listed

order.

search - Selects rows based on a multi-column key of a sorted

or indexed rdbtable.

sorttbl - Sorts a datafile by one or more columns.

jointbl - Natural or "Master/Detail" join of two rdbtables.

mergetbl - Merges two like rdbtables.

compute - Computes an arbitrary expression using column names.

uniqtbl - Makes an rdbtable unique on specified columns.

subtotal - Lists subtotals of specified columns.

The report generators each read an rdbtable via STDIN and produce a

report on STDOUT, so when they are in a "pipeline" of operators they

will be the operator at the end. The report generators are:

ptbl - Quick and easy printing of output formatted from

information in the header.

reporttbl - Best form of output, with definable format.

- 8 -

summ - Summary/Statistical information about data values in an

rdbtable.

The utilities are used for manipulating the structure and content

of rdbtables and are generally used as separate tasks. The utilities

are:

headchg - Generates and replaces (or removes) the header of an

rdbtable.

dataent - An interactive capability for entering data into an

rdbtable.

etbl - Uses an editor to allow modifications to an rdbtable.

valid - Verifies the structure of an rdbtable.

repair - Attempts to repair candidate RDB datafiles.

All operators take a ’-help’ option to show details of operation

online. Following is a sub-section for each operator, in alphabetic

order.

COLUMN

Usage: column [options] list

Selects columns by name (and order) and outputs an rdbtable with

these columns. Can effectively select, order, add, delete, or duplicate

columns.

The value ’list’ is normally a list of column names. If ’list’

contains a triplicate of the form ’-c NAME NEW’ then column name ’NAME’

will be changed to ’NEW’. If ’list’ contains a triplicate of the form

’-a NAME DEFN’ then a new (null) column is added, at that point in the

list of column names, with name ’NAME’ and definition ’DEFN’.

This RDB operator reads an rdbtable from STDIN and writes an

rdbtable to STDOUT. Options may be abbreviated.

Options:

-edit Edit option. Used by etbl.

David A Case

- 9 -

-help Print this help information.

-v Inverse option. Selects all columns except those named.

As an example using the sample rdbtable from the DATA section

(named sample), to select columns named ’NAME’ and ’COUNT’ the command

would be:

column NAME COUNT < sample

To select all columns except column ’NAME’ the command would be:

column -v NAME < sample

To add a new column named ’LENGTH’ with a size of 10 the command would

be:

column -v -a LENGTH 10 < sample

Note that to include documentation with the new column definition the

command would be:

column -v -a LENGTH ’10 length in meters’ < sample

The ’10 length in meters’ must be quoted so that it will be treated as

a single token.

COMPUTE

Usage: compute [options] [statements]

Computes values for data fields based on arbitrary statements using

column names. Any characters that are special to the UNIX shell must be

quoted.

Comparison operators may be of the form: gt, ge, lt, le, eq, ne.

For example ’NAME eq Hobbs’. Logical constructors ’or’ and ’and’ may

be used; as well as ’null’ to indicate an empty data value. The

supplied statements may be essentially any valid PERL statements.

All of the Comparison operators and Logical constructors are

reserved and should not be used as column names (they are all lower case

and four characters or less).

David A Case

- 10 -

Options:

-help Print this help information.

-fXXX The statements are in the file ’XXX’, instead of on the

command line. The advantage in this case is that no quoting

of characters that might be special to the UNIX shell is

necessary.

This operator reads a rdbtable via STDIN and writes a rdbtable via

STDOUT. Options may be abbreviated.

If a file is used to contain the statements any line in the file

that starts with a sharp sign (#) is treated as a comment and ignored.

Also if there is a sharp sign preceded by a space character anywhere on

the line the rest of the line is also treated as a comment.

Since column names and reserved words are parsed by the program, do

not put the entire expression in a single pair of quotes as that will

prevent the parsing. Also note that column names and reserved words

need to be surrounded by blank spaces if they are not individually

quoted. For example either form below is fine:

row NAME eq "L Brown" < sample

row "NAME" "eq" "L Brown" < sample

but do not use this form:

row "NAME eq L Brown" < sample

Example rdbtable (named cfile):

name count type amt
6 5N 4 5N
Bush 3 A 133
Hansen 39 A 23
Newton 8 E 8
Hobbs 42 B 144
Hart 2 C 55
Jones 4 B 244
Smith 5 D 1111

The command:

compute count += 100 if type lt D < cfile | ptbl

gives the output:

- 11 -

name count type amt
------ ----- ---- -----
Bush 103 A 133
Hansen 139 A 23
Newton 8 E 8
Hobbs 142 B 144
Hart 102 C 55
Jones 104 B 244
Smith 5 D 1111

Example file of commands named ’XXX’:

if(type eq A){
name = NEW ;
amt = count * 2 ;
type = ’AAA’ ;

}
else{

name = OLD ;
amt = count + 1000 ;
type = ’ZZZ’ ;

}

Output from command:

compute -fXXX < cfile | ptbl

would be:

name count type amt
------ ----- ---- -----
NEW 3 AAA 6
NEW 39 AAA 78
OLD 8 ZZZ 1008
OLD 42 ZZZ 1042
OLD 2 ZZZ 1002
OLD 4 ZZZ 1004
OLD 5 ZZZ 1005

- 12 -

DATAENT

Usage: dataent [options] rdbtable

or: dataent [options] -init template

This utility provides an interactive capability for entering data

into an rdbtable. The user is prompted by column name for data values.

Options may be abbreviated.

Options:

-help Print this help info.

-init Initiate a new rdbtable.

-nbr Do NOT remove leading and trailing blank space from data values.

-prev Use data values from previous row as defaults for current row.

In the first case of usage above, new rows of data are added at the

end of an existing rdbtable. In the second case, a template file is used

to generate a new rdbtable and add rows of data to it.

At each column name prompt the user may enter data followed by a

<RET> or just a <RET> to retain the current value, which is initially

null. Normally leading and trailing blank space is removed from data

values. If it is desired to prevent this enter a backslash (\) as the

first character (the backslash will be removed) or use the ’-nbr’

option. In order to replace an existing data value with a null value

enter a backslash (\) and a <RET>.

At any column name prompt, if a single space character is entered,

followed by a <RET>, control is transferred to the end of row action

prompt. This is useful if not all data values need to be entered on all

rows. If two space characters followed by a <RET> is entered control is

transferred to the previous column name prompt. This is useful if an

error was made entering data; it can be corrected immediately.

After all the column name prompts for a row have been responded to,

the user is asked for the next action. The default is to save the

current row of data to the rdbtable and go on to enter data for the next

row. Other options available are to go back and check each value of the

current row; to quit, saving or not saving the current row; to list the

data values for the entire row; to delete the current row and start a

- 13 -

new one; to jump back to a specified column name prompt for the current

row and continue from there; or to produce a help listing. Also the

setting of the ’-nbr’ and ’-prev’ options may be toggled on or off.

At any time an INTERRUPT signal (^C or DEL) may be entered to abort

the program. In this case all rows of data except the current one will

be saved.

Uses RDB operator: headchg.

ETBL

Usage: etbl [options] rdbtable [col_spec] [line_spec] [pat_spec]

This utility calls an editor to allow the editing of selected lines

and/or columns of (or the entire) rdbtable. Options may be abbreviated.

Options:

-eNAME Use the editor ’NAME’.

-help Print this help info.

-l[N] Use "list" format for editing instead of "column" format. If

N is given it is the line length to use (min is 50).

-npp No postprocessing after return from the editor. The edited file

is saved with a name of the form "etbl.t.nnnn" where "nnnn" is

the process number.

-RCS Force checkout of the rdbtable from RCS.

A "col_spec" is a list of column names.

A "line_spec" is a list of line numbers, of increasing value, optionally

separated by a dash to specify a range, e.g. "10-20". The form "N-" means

from line N to end of file. The header is always included, so do not

specify lines 1 or 2 (except as the first part of a larger group, e.g.

"1-10").

A "pat_spec" is a single pattern (of the form: /pat/) optionally followed

by one or more column names, and may be preceded with the reserved word

’ne’ to negate the meaning (e.g. the pattern should NOT match).

- 14 -

The order of "Col_spec", "line_spec", and "pat_spec" is significant only

to the extent that "col_spec" must precede "pat_spec" in the command line

if both are given.

If none of "col_spec", "line_spec", or "pat_spec" are given then

the entire rdbtable will be edited. If one or more of the three above

options are given then the selected subset of the rdbtable will be

edited. The option "col_spec" identifies which columns of the rdbtable

are to be edited, and options "line_spec" and "pat_spec" determine which

lines will be selected for editing, either by direct reference

("line_spec" given "col_spec" not given) or by pattern matching

("col_spec" given "line_spec" not given). If both "line_spec" and

"pat_spec" are given then only lines within the bounds of "line_spec"

will be considered for selection by pattern matching.

If "pat_spec" does not include column names then the pattern (any

PERL regular expression) is matched against each entire row; a row is

selected if there is a match anywhere in the row. If column names are

included the pattern is matched against only the specified columns. In

this case a row is selected if a match is found in any specified column.

If the "ne" option precedes the "pat_spec" without column names then an

entire row is selected if the pattern does not match anywhere in the

row, and if column names are given then the row is selected if the

pattern does not match in any specified column.

The form of the file to be edited is either "column" with visible

column delimiters (the default) or "list" format where the column names

are on the left and the data is on the right. The default editor is

specified by the environment variable EDITOR if set, otherwise the

editor ’e’ is used.

In either form of editing the delimiter is a "pipe" symbol (|).

Care should be taken when editing not to use any "pipe" symbols in the

data, or to delete any existing pipe symbols in the file. Also, in the

case of "list" form, one or more blank lines must separate each record.

The rbdtable may be an existing file, or it may be automatically

checked out from RCS. In the latter case it will be checked back into

RCS after the editing is complete.

- 15 -

The default action is that if the rdbtable does not exist an

attempt will be made to find the rdbtable under RCS (the ’-RCS’ option

may be used to force the use of an RCS file).

Afterward, except in the RCS case, the original contents of the

rdbtable will be left in a file of the same name preceded with a comma,

e.g. "sample" will be ",sample".

Uses RDB operators: column, ptbl, mktbl, tbl2lst, lst2tbl.

WARNING: If line_spec is given the number of columns must not be

changed by editing, or if col_spec and/or "pat_spec" is given the number

of lines must not be changed by editing, otherwise the results may be

unpredictable.

An example command to edit the rdbtable (named sample) from the

DATA section would be:

etbl sample

which would edit the entire rdbtable. The file as it is ready to edit is

shown in Table 3. The pipe character ’|’ must not be removed during the

editing process, although it may be moved left or right if necessary and

the spaces around the pipe character may be deleted if desired.

This form of editing is fine if the rdbtable is not large. If it

is large then editing only those parts that need changes is faster and

less error prone. To edit only columns ’NAME’, ’COUNT’, and ’AMT’, the

command would be:

etbl sample NAME COUNT AMT

To edit only lines five thru seven the command would be:

etbl sample 5-7

- 16 -

Table 3

RDBTABLE (SAMPLE) READY TO EDIT, COLUMN FORM

NAME | COUNT | TYP | AMT | OTHER | RIGHT
6 | 5N | 4 | 5N | 8 | 8>
Bush | 44 | A | 133 | Another | This
Hansen | 44 | A | 23 | One | Is
Jones | 77 | X | 77 | Here | On
Perry | 77 | B | 244 | And | The
Hart | 77 | D | 1111 | So | Right
Holmes | 65 | D | 1111 | On | Edge

To edit only lines five thru seven of only columns ’NAME’, ’COUNT’, and

’AMT’ the command would be:

etbl sample NAME COUNT AMT 5-7

and the file to edit would look like:

..>>> 1 2 CONTROL LINE, DO NOT TOUCH <<<
NAME | COUNT | AMT
6 | 5N | 5N
..>>> 5 3 CONTROL LINE, DO NOT TOUCH <<<
Jones | 77 | 77
Perry | 77 | 244
Hart | 77 | 1111

Note that whenever a line_spec is given, control lines (starting with

’..>>>’ are inserted into the file to edit. They must not be modified

during the editing process. They are used to reconstruct the rdbtable

after editing.

If the rdbtable has data fields that are long, i.e. longer than

convenient to edit in the column form shown above, the ’list’ form is

the preferred method. The usage of line_spec and col_spec are unchanged

but the form of the file to edit is different. For example consider an

rdbtable (named sample3) which is shown in Table 4, where the TAB

characters are represented by ’<T>’ and the newline characters are

represented by <R>. This small rdbtable looks very incoherent in raw

form, and a file of any real size with long data fields is even more

so. The command to edit the file sample3 in ’list’ form would be:

- 17 -

Table 4

RDBTABLE (SAMPLE3) ACTUAL CONTENT

name<T>datatype<T>agencysrc<T>dbms<T>contact<T>contents<T>notes<R>
46<T>15<T>60<T>15<T>21<T>530<T>600<R>
ACAS (Air Combat Assessment)<T>BDA<T>Bigplace AFB<T>File<T>Starr<T>Air
Combat Assessment BDA data. Duplicates data under ACAS (Air Combat
Assessment) BDA Sorties, diskettes nr 1,2,3.<T>On two 3.5 inch
diskettes.<R>
ACAS (Air Combat Assessment) BDA Sorties<T>BDA<T>Sawyer AFB<T>File<T>
Hobbs/Emerson<T>85 files, 2 per day containing 12 and 24 hour reports.
This data is different from that under ACAS (Air Combat Assessment) BDA
Data, from diskettes 1,2,3.<T>Received 5/6/91.<R>
ATO (Air Tasking Orders) Original<T>ATO<T>HQ USAF, Universal AFB<T>
File<T>Marshall<T>Original ATO messages. Both sets are incomplete.<T>
To be joined into single file and edited. Missing sections not yet
ordered. May be parsed completely, or only for key comments. Much data
to be processed.<R>
ABC Original<T>ABC<T>HQ USAF, Universal AFB<T>File<T>Marshall<T>Original
ATO messages. Both sets are incomplete.<T>To be joined into single file
and edited. Missing sections not yet ordered. May be parsed completely,
or only for key comments. Much data to be processed.<R>

etbl -list sample3

which would produce a file to edit as shown in Table 5. Note that each

section holds information relating to one row in the rdbtable and that

the first section holds information relating to the header of the

rdbtable. Also note that each section is separated by a blank line (it

could be any number of blank lines).

Each row in a section relates to a single data value. The pipe

character ’|’ must not be removed during the editing process, although

it may be moved left or right if necessary. Only one pipe character is

to be in the information relating to one data value, although that

information may be physically on more than one line in the section if

the data value is long.

The spaces on both sides of the pipe character as well as the

spaces around the column names are only for readability; they may be

moved or even deleted if desired.

- 18 -

Table 5

RDBTABLE (SAMPLE3) READY TO EDIT, LIST FORM

name | 46
datatype | 15
agencysrc | 60

dbms | 15
contact | 21
contents | 530

notes | 600

name | ACAS (Air Combat Assessment)
datatype | BDA
agencysrc | Bigplace AFB

dbms | File
contact | Starr
contents | Air Combat Assessment BDA data. Duplicates data under ACAS (Air

Combat Assessment) BDA Sorties, diskettes nr 1,2,3.
notes | On two 3.5 inch diskettes.

name | ACAS (Air Combat Assessment) BDA Sorties
datatype | BDA
agencysrc | Sawyer AFB

dbms | File
contact | Hobbs/Emerson
contents | 85 files, 2 per day containing 12 and 24 hour reports. This data

is different from that under ACAS (Air Combat Assessment) BDA
Data, from diskettes 1,2,3.

notes | Received 5/6/91.

name | ATO (Air Tasking Orders) Original
datatype | ATO
agencysrc | HQ USAF, Universal AFB

dbms | File
contact | Marshall
contents | Original ATO messages. Both sets are incomplete.

notes | To be joined into single file and edited. Missing sections not
yet ordered. May be parsed completely, or only for key
comments. Much data to be processed.

name | ABC Original
datatype | ABC
agencysrc | HQ USAF, Universal AFB

dbms | File
contact | Marshall
contents | Original ATO messages. Both sets are incomplete.

notes | To be joined into single file and edited. Missing sections not
yet ordered. May be parsed completely, or only for key
comments. Much data to be processed.

- 19 -

The advantage of this form of edit file is that even with very

large data values most, if not all, of the information from each row of

an rdbtable will be visible on the screen at once.

HEADCHG

Usage: headchg [options] file.tpl

Replaces the header (first two rows) of an rdbtable with a header

generated from information in the template file ’file.tpl’. Options are

available to add, copy, or delete the header, or to generate a template

file from an existing rdbtable.

Each line of the Template file contains info about a column, in

order. The lines contain: (optional) index number (starting at 0 or 1),

column name, definition, and (optional) comments or documentation, white

space separated. If column name contains spaces it must be enclosed in

double quotes. Names containing space characters are not recommended,

however, as it is generally troublesome and error prone. A good

substitute is the underscore character (_).

Lines that start with a sharp character ’#’ are skipped, as are

blank lines. To start a column name with a sharp character ’#’ the

name must be enclosed in double quotes. (but this is not recommended).

The number of columns in the header is normally reported on STDERR.

This operator reads an rdbtable via STDIN and writes an rdbtable

via STDOUT. Options may be abbreviated. This operator uses the RDB

operator: valid.

Options:

-add Add the header to an rdbtable instead of replacing it.

-copy Copies the header from ’file.tpl’ instead of generating it.

In this case ’file.tpl‘ is (at least a header of) an rdbtable,

NOT a template file.

-del Delete the rdbtable header instead of replacing it.

-gen Generate header only, no rdbtable read.

-help Print this help information.

-ndoc Documentation in template file is NOT to be included in the second

David A Case

- 20 -

line of the header (included by default).

-quiet No messages printed on STDERR.

-rdb Treat ’file.tpl’ as an rdbtable, use data in columns two and

three to make the header.

-templ Generate a template file from the header of the Table, on STDOUT.

As an example, to generate a template file named ’new.tpl’ from the

rdbtable (named sample) from the DATA section, the command would be:

headchg -templ < sample > new.tpl

The contents of file ’new.tpl’ would then be:

0 NAME 6
1 COUNT 5N
2 TYP 4
3 AMT 5N
4 OTHER 8
5 RIGHT 8>

To change the header of rdbtable ’sample’, the procedure is to edit the

file ’new.tpl’, and then run ’headchg’ using the modified file. For

example, to change the names so that only the first letters are upper

case and to make column ’OTHER’ numeric, edit file ’new.tpl’ so it looks

like the following:

0 Name 6 All names are first letter upper case.
1 Count 5N
2 Typ 4
3 Amt 5N
4 Other 8N Now numeric.
5 Right 8>

Note the index in the zeroth column and the documentation in the fourth

column, both of which are optional, but recommended. The command to

change the header of rdbtable ’sample’ and make a new rdbtable called

’new.sample’ would be:

headchg new.tpl < sample > new.sample

- 21 -

JOINTBL

Usage: jointbl [options] col.name[=col.name_2] rdbtable_2 < rdbtable_1

Does a join of two rdbtables on the column(s) specified. The

default is a "natural" join, with optional "Master/Detail" or cartesian

(cross-product) type joins. Options may be abbreviated.

Options:

-c Do a cartesian (cross-product) join.

-help Print this help information.

-md Do a "Master/Detail" join rather than a natural join.

The Table from STDIN is the master.

A natural join produces a new rdbtable that contains only rows from

the input rdbtables that match on the specified columns (key columns). A

master-detail join produces a new rdbtable that contains all rows from

the master rdbtable and those rows from the secondary rdbtable that

match. A cartesian join produces an rdbtable that contains all rows of

both input rdbtables.

Each item in the list of column(s) may specify column names that

are different in the two rdbtables, i.e. ’=column_2’, if given, refers

to a name in rdbtable_2 that corresponds to ’column’ in rdbtable_1. If

’=column_2’ is not given it means that the corresponding column name in

both rdbtables is the same.

If different column names are specified, the name of the join

columns in the output rdbtable will be from rdbtable_1.

Note that the two rdbtables must be sorted on the columns specified

in order for a join operation to function correctly.

The order of columns in the output rdbtable will be: first the join

columns, then the other columns from rdbtable_1, then the other columns

from rdbtable_2.

This operator reads an rdbtable via STDIN and writes an rdbtable

via STDOUT.

If we have the rdbtable (named samplej) here:

David A Case

- 22 -

name nr typ amt
6 2 4 4
Bush 1 A 133
Bush 2 A 134
Hansen 3 A 143
Hobbs 4 B 144
Hobbs 5 B 144
Jones 6 C 155
Perry 7 D 244
Perry 8 D 311

and the rdbtable (named samplej2) here:

name cnt typ amt
6 5N 4 5N
Hobbs 41 A 141
Hobbs 42 BB 142
Hobbs 51 BB 144
Hobbs 43 CC 143

then the command to do a natural join of samplej and samplej2 on column

name is:

jointbl name samplej2 < samplej

and the results is shown in Table 6. The command to do a "master-

detail" join of the same two rdbtables on column name is:

jointbl -md name samplej2 < samplej

- 23 -

Table 6

NATURAL JOIN OF RDBTABLES SAMPLEJ AND SAMPLEJ2

name nr typ amt cnt typ amt
6 2 4 4 5N 4 5N
Hobbs 4 B 144 41 A 141
Hobbs 4 B 144 42 BB 142
Hobbs 4 B 144 51 BB 144
Hobbs 4 B 144 43 CC 143
Hobbs 5 B 144 41 A 141
Hobbs 5 B 144 42 BB 142
Hobbs 5 B 144 51 BB 144
Hobbs 5 B 144 43 CC 143

Table 7

MASTER-DETAIL JOIN OF RDBTABLES SAMPLEJ AND SAMPLEJ2

name nr typ amt cnt typ amt
6 2 4 4 5N 4 5N
Bush 1 A 133
Bush 2 A 134
Hansen 3 A 143
Hobbs 4 B 144 41 A 141
Hobbs 4 B 144 42 BB 142
Hobbs 4 B 144 51 BB 144
Hobbs 4 B 144 43 CC 143
Hobbs 5 B 144 41 A 141
Hobbs 5 B 144 42 BB 142
Hobbs 5 B 144 51 BB 144
Hobbs 5 B 144 43 CC 143
Jones 6 C 155
Perry 7 D 244
Perry 8 D 311

and the results is shown in Table 7.

LST2TBL

Usage: lst2tbl [options]

Converts a file in "list" format to an rdbtable. Long data fields

may be folded. This operator is mainly used by other operators.

Options may be abbreviated.

Options:

- 24 -

-edit Edit option. Used by etbl.

-help Print this help information.

This RDB operator reads an rdbtable from STDIN and writes an

rdbtable to STDOUT.

MERGETBL

Usage: mergetbl [options] < old_table column ... merge_table

This operator merges and/or deletes rows of ’old_table’ based on

data values in ’merge_table’ in the specified column(s). Both tables

should be sorted on the specified column(s).

In the normal case, one or more rows in ’merge_table’ either

replace one or more existing rows in ’old_table’ if the key column(s)

match, or are inserted in order if the key column(s) do NOT match.

If the delete option is specified on the command line, one or more

existing rows in ’old_table’ will be deleted if there is a key column(s)

match and the data in the delete column is equal to the delete string,

">>DEL<<" (without the quotes) by default. The delete column is the

first non-key column in ’merge_table’.

Both tables should have similar data structures. The header for the

new rdbtable is taken from ’merge_table’, thus allowing a change of

header information to be made.

Options:

-d Delete option. Delete rows where the key column(s) match and

the data value in the delete column is equal to the delete

string, ">>DEL<<" (without the quotes) by default.

-dSTG Like the delete option above but use ’STG’ as the delete string.

-help Print this help info.

This operator writes an rdbtable via STDOUT. Options may be

- 25 -

abbreviated.

MKTBL

Usage: mktbl [options]

Makes a file of data in columns (with visible column delimiters)

into an rdbtable. The column delimiter is the pipe symbol (|). This

operator is mainly used by other operators.

This operator reads a file via STDIN and writes an rdbtable via

STDOUT. Options may be abbreviated.

Options:

-edit Edit form of output, used primarily by ’etbl’.

-help Print this help information.

PTBL

Usage: ptbl [options]

This operator used for quick and easy printing of an rdbtable, in a

simple but useful form. It prints an rdbtable using formatting

information from the header.

The printing of each row of data will be on one line if possible,

but when multiple lines are necessary the second and later lines are

indented for readability. Also when multiple lines are necessary a

simple space availability algorithm is used to minimize the number of

lines printed for each row of data. This may result in the order of some

data values being rearranged from their order in the rdbtable. The ’-b0’

option can override this algorithm and force the same printing order as

in the rdbtable.

This RDB operator reads an rdbtable from STDIN and writes a

formatted report on STDOUT. Options may be abbreviated.

Options:

-b0 By default, when a multi-line record of output for each row

is necessary (due to the width of the current window or terminal)

the program will try to fill space at the end of lines that

- 26 -

would otherwise be wasted by moving some columns. This option

prevents the moving of any columns.

-b[N] This option attempts a "best fit" by rearranging columns (widest

columns first). If ’N’ is given the first N columns of the first

line will not be moved. The default condition is ’-b’.

-Bigf Handle very large data fields, e.g. over 1000 characters. This

option takes longer but it works for any size data fields.

-edit Edit form of output, used primarily by ’etbl’.

-fold Fold long data fields into multi line data based on the defined

field width.

May be used with the ’-t’ option to limit the field width. Only a

single line record of output is produced with this option.

-help Print this help information.

-iN Indent size of N spaces on 2nd and later lines of a multi-line

record of output. Default is 4 spaces.

-lN Line length of N characters for output. Default is the width of

the current window or terminal.

-pN Page size in of N lines. Default is the height of the current

window or terminal. A value of zero ’-p0’ will turn paging off.

-PX[stg] Page headings and settings for printing. A two line heading is

put onto each page: page number, current date, and an optional

string (stg). Sets page length (in lines) and line length (in

characters) according to the value of ’X’ as follows.

X: P page: 60 line: 80 (default font size)

X: R page: 47 line: 116 (rotated default)

X: A page: 51 line: 125 (rotated 10 point font)

X: 8 page: 63 line: 144 (rotated 8 point font)

X: 6 page: 82 line: 192 (rotated 6 point font)

X: W page: and line: from current window size.

Other desired page and/or line size options may be set after

this in the option list.

-sK Separator ’K’ (which may be multi character) placed between

columns. Default is two spaces.

-t[N] Truncate data to the width defined in the header. If N is given

- 27 -

the width of printed fields will be further limited to N

characters.

-window List as many columns as possible in single line records that

will fit in the current window or terminal width.

As an example using the sample rdbtable from the DATA section

(named sample), the command to view this rdbtable would be:

ptbl < sample

which would produce the output shown in Table 8. The same command with

a page heading for printing:

ptbl -PP < sample

produces the output as shown in Table 9. Using an rdbtable (named

sample4) that has long data values, shown in Table 10, the command to

print the rdbtable using the truncate option is:

ptbl -t < sample4

Table 8

PRINTING RDBTABLE (SAMPLE) USING PTBL

NAME COUNT TYP AMT OTHER RIGHT
------ ----- ---- ----- -------- --------
Bush 44 A 133 Another This
Hansen 44 A 23 One Is
Jones 77 X 77 Here On
Perry 77 B 244 And The
Hart 77 D 1111 So Right
Holmes 65 D 1111 On Edge

Table 9

PRINTING RDBTABLE (SAMPLE) WITH PAGE HEADING USING PTBL

Page 1 Mon Dec 2 16:56:43 PST 1991

NAME COUNT TYP AMT OTHER RIGHT
------ ----- ---- ----- -------- --------
Bush 44 A 133 Another This
Hansen 44 A 23 One Is
Jones 77 X 77 Here On
Perry 77 B 244 And The
Hart 77 D 1111 So Right
Holmes 65 D 1111 On Edge

- 28 -

Table 10

RDBTABLE WITH LONG DATA VALUES (SAMPLE4) ACTUAL CONTENT

name<T>type<T>contact<T>contents<R>
10<T>4<T>21<T>20<R>
Hansen<T>AAA<T>R. Starr at the UCLA & USC<T>Duplicate data under
processing order number 55-7.<R>
Hart<T>CCC<T>Hobbs/Emerson at RAND Corporation<T>85 files, 2 per
day containing 12 and 24 hour reports.<R>
Hobbs<T>EEE<T>Marshall at Universal AFB<T>Original PAF messages.
Both sets are incomplete.<R>
Bush<T>KKK<T>General USAF personnel<T>Duplicate ATO messages,
incomplete.<R>
Lender<T>RRR<T>Army base in Nevada<T>Nothing.<R>
Emerson<T>UUU<T>Navy at Washington DC<T>More than we thought at
first.<R>

which will produce output with the data values truncated to the defined

column width as in Table 11. Using the same rdbtable with the fold

option:

ptbl -fold < sample4

produces output with the long data values ’folded’ within their defined

column widths as shown in Table 12. Note that each line is repeated

until the entire data value for each column is completely shown. This

makes this type of output variable length.

If you need a quick and easy way to look at the data in an rdbtable

use the -win option. This option will cause ptbl to list as many

columns as possible in single line records that will fit in the current

window or terminal width. Note that you do not have to type the column

names (or even know them) to use this option.

Table 11

PRINTING RDBTABLE (SAMPLE4) WITH PTBL -TRUNC OPTION

name type contact contents
---------- ---- --------------------- --------------------
Hansen AAA R. Starr at the UCLA Duplicate data under
Hart CCC Hobbs/Emerson at RAND 85 files, 2 per day
Hobbs EEE Marshall at Universal Original PAF message
Bush KKK General USAF personne Duplicate ATO messag
Lender RRR Army base in Nevada Nothing.

- 29 -

Emerson UUU Navy at Washington DC More than we thought

Table 12

PRINTING RDBTABLE (SAMPLE4) WITH PTBL -FOLD OPTION

name type contact contents
---------- ---- --------------------- --------------------
Hansen AAA R. Starr at the UCLA Duplicate data under

& USC processing order
number 55-7.

Hart CCC Hobbs/Emerson at RAND 85 files, 2 per day
Corporation containing 12 and 24

hour reports.
Hobbs EEE Marshall at Universal Original PAF

AFB messages. Both sets
are incomplete.

Bush KKK General USAF Duplicate ATO
personnel messages,

incomplete.
Lender RRR Army base in Nevada Nothing.
Emerson UUU Navy at Washington DC More than we thought

at first.

It may be combined with the -t option to increase the number of

columns of data shown on each line at the expense of some column width.

For example the command ’ptbl < d11c’ on an 80 character wide

window or terminal produces the following:

- 30 -

name count type amt n1 n3
------ --------------- ---- ----- ------------------------ ------------

n2 n4 n5
------------------------ ------------------------ ------------
n6 n7
------------ ------------

Bush 3 A 133 alpha22.307 117722
baker DDBBx17 other
124567 8GGXXH17

Hansen 39 A 23 beta222.307 117723
charlie DDBBx18 data
1239870 GGXXH17

Newton 8 E 8 gama22.333 117724
dog DDBBx19 exists
1239870 GGXXH17

Hobbs 42 B 144 delta3.3.118 117725
echo DDBBx20 here
1239870 GGXXH17

Hart 2 C 55 epslion33.118 117726
foxtrot DDBBx21 also
1239870 GGXXH17

This is readable, but not very nice to look at, and even worse if there

are more columns. The command ’ptbl -win < d11c’ produces:

name count type amt n1 n3
------ --------------- ---- ----- ------------------------ ------------
Bush 3 A 133 alpha22.307 117722
Hansen 39 A 23 beta222.307 117723
Newton 8 E 8 gama22.333 117724
Hobbs 42 B 144 delta3.3.118 117725
Hart 2 C 55 epslion33.118 117726

Not all the data is listed, but the first few columns (sometimes

the most important) are easier to view. The command ’ptbl -win -t6 <

d11c’ shows even more of the data, at the expense of some data width:

name count type amt n1 n2 n3 n4 n5 n6 n7
------ ------ ---- ----- ------ ------ ------ ------ ------ ------ ------
Bush 3 A 133 alpha2 baker 117722 DDBBx1 other 124567 8GGXXH
Hansen 39 A 23 beta22 charli 117723 DDBBx1 data 123987 GGXXH1
Newton 8 E 8 gama22 dog 117724 DDBBx1 exists 123987 GGXXH1
Hobbs 42 B 144 delta3 echo 117725 DDBBx2 here 123987 GGXXH1
Hart 2 C 55 epslio foxtro 117726 DDBBx2 also 123987 GGXXH1

- 31 -

REPAIR

Usage: repair [options] file ...

Attempts to repair candidate RDB datafiles, e.g. files that have

been ported from a MacIntosh or PC (MSDOS computer) in spreadsheet form

but that do not yet have valid rdbtable structure. Generates definition

lines (second line of header). The width of all data values is checked

and the maximum width for a column is used as the column width in the

definition line for that Table.

It also works with existing rdbtables (’-exist’ option) and is

convenient for removing leading and trailing space characters from data

values (-blank option).

Adds fields as necessary to rows (null), or to header (DUM1, DUM2,

...) to make the Table structure valid.

The new rdbtables will be in the current directory (even if the

input files are not) and will have the suffix changed (or added) to

’.rdb’ by default.

Options may be abbreviated.

Options:

-blank Remove leading and trailing blank characters from data fields.

-dN Deletes the first N lines of each input file. Used to

remove extra lines before the actual header.

-exist The file(s) are existing rdbtables. Instead of generating

new definition lines the current ones are used as starting

values.

-Exist Just like ’-exist’ except the data width check is not done.

-help Print this help information.

-kWORD The first line of each input file containing "WORD" will

be considered the line containing the column names Works

after the ’-d’ option, if given.

-rFILE Use the template file ’FILE’ to replace the existing header.

-sXXX Suffix on new files of ’XXX’ instead of ’.rdb’.

-tFILE Use the template file ’FILE’ for header and definition data

instead of scaning the input files.

- 32 -

REPORTTBL

Usage: reporttbl [options] file.frm

Formats and prints an arbitrary style report, with the format

specified in the file "file.frm". A page header may be specified.

This RDB operator reads an rdbtable from STDIN and writes a

formatted report on STDOUT. Options may be abbreviated.

Options:

-help Print this help information.

-pN Page size in of N lines. Default is 60 lines.

A value of zero ’-p0’ will turn paging off.

The "file.frm" file (or form file) shows pictorially one ’record’

of output, which will contain data from one row of an rdbtable. An

optional page header may be defined as well.

The form file contains regular text, picture fields, and associated

column names. Regular text prints just as given. Picture fields define

the width and justification for printing a data value from a column.

The names of the associated columns are listed on the line following the

picture fields and in the same order. Note that this file should not

contain any TAB characters; space characters should be used instead.

Picture fields start with either ’@’ or ’^’ and are followed by one

of three primary characters to define the width of the field. The three

characters are ’<’, ’>’, or ’|’ to specify left, right, or center

justification respectively. There is also an alternate right

justification character for printing numeric data, with optional decimal

point. The character is the sharp sign ’#’, and a period specifies the

decimal point placement, as in ’@########.##’.

A numeric picture field has the following features:

Data is lined up on the decimal point (if any)

Automatic rounding of data

Automatic conversion of data in scientific notation

- 33 -

Numeric Data may be in the form of integers, fixed point, or

scientific notation’ e.g. 12345, 4567.345, or 1.678E17.

Normally picture fields start with the ’@’ character. That means to

put the referenced data value into the defined picture field, or as much

of the data as will fit into the field, if the data is larger than the

field. If the field starts with the ’^’ character it means to repeat

the field on as many lines as necessary in order to print the entire

data value. This is useful for large data fields, such as comments or

free text.

Instead of a column name there are some special names that can be

used to have other information inserted. This are especially useful if

there is a page header. The special names and what they mean are:

pgnr - current page number

date - current date

rcnr - current record number (row number)

‘cmd arg1 ... argN‘ - the UNIX command is executed once,

and its output is put into the associated picture field. Note

that they are BACKTICKS (grave accents) not single quotes.

_COLNAME_cd_ - the column documentation for column name

’COLNAME’.

tbld - the table documentation, all lines.

_tbld_3.7_ - the table documentation, lines 3 thru 7. If either

first or second number is missing it means line 1 or the last

line of the header, respectively.

An example of a form file for use with rdbtable ’sample’ is shown in

Table 13.

The first and last lines (that start with ’format’ or a single

period) define the pictorial records and must be as shown. The first

record defines the header and is optional. If this form file (named

sample.frm) were used in the command:

reporttbl sample.frm < sample

it would produce the one page report as in Table 14.

- 34 -

Table 13

FORM FILE FOR RDBTABLE (SAMPLE)

format top =
Page @>, The Page Header @<<<<<<<<<<<<<<<<<<<<<<<<<<<

pgnr _date_

.
format =
Name: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< Type: @>>>>

NAME TYP
Total: @<<<<<<<< Other: @<<<<<<<<<<<<<<<

AMT OTHER
.

Table 14

PRINTING RDBTABLE (SAMPLE) WITH REPORTTBL

Page 1, The Page Header Mon Dec 2 16:21:18 PST 1991

Name: Bush Type: A
Total: 133 Other: Another

Name: Hansen Type: A
Total: 23 Other: One

Name: Jones Type: X
Total: 77 Other: Here

Name: Perry Type: B
Total: 244 Other: And

Name: Hart Type: D
Total: 1111 Other: So

Name: Holmes Type: D
Total: 1111 Other: On

For another example, one might want to have a date on a report in

other than the standard date output format, and an idea of who executed

the program, and have a reference count of the records being produced.

The form file might be as in Table 15. which could produce:

- 35 -

Table 15

ANOTHER FORM FILE

format top =
Run By: @<<<<<<< The Date/Time is @<<<<<<<<<<<<<<<<<<<<<<<<

‘whoami‘ _‘date "+%m/%d/%y %H:%M"‘_
.
format =

RecordNr: @>> @<<<<<<<<<<<<<<<<<<<<
rcnr OTHER

.

Run By: hobbs The Date/Time is 10/15/91 09:43

RecordNr: 1 Other data here
RecordNr: 2 and here,
RecordNr: 3 and so on.
...

Another example shows how longer data values can be handled. If the

form file (named sample2.frm) looks like Table 16, and if the following

command is used:

reporttbl sample2.frm < sample2

then the output would be as shown in Table 17.

- 36 -

Table 16

FORM FILE FOR RDBTABLE (SAMPLE2)

format top =
Page @>, Page Header here @<<<<<<<<<<<<<
pgnr _‘date "+%m/%d/%y %H:%M"‘_

Executed by @<<<<<<< on: @<<<<<<<<<
‘whoami‘ _‘hostname‘_

format =
Name: @<<<<<<<<<<<<<<< Other: @<<<<<<<<<< Type: @<<<<<<<<

NAME OTHER TYP
Comment: ^<<<<<<<<<<<<<< Long: ^<<<<<<<<<<<<<< Right: @>>>>>>>

COMMENT LONG RIGHT
===

- 37 -

Table 17

PRINTING RDBTABLE (SAMPLE2) WITH REPORTTBL

Page 1, Page Header here 12/02/91 16:32
Executed by hobbs on: id

Name: Bush Other: Another Type: A
Comment: A comment Long: This a long Right: This

here. message for
test.

===
Name: Hansen Other: One Type: A

Comment: A longer Long: This a long Right: Is
comment here. message for

test.
===

Name: Jones Other: Here Type: X
Comment: A longer, Long: Short test. Right: On

longer comment
here.

===
Name: Perry Other: And Type: B

Comment: A short comment Long: This a long Right: The
here. message for

test.
===

Name: Hart Other: So Type: D
Comment: Little here. Long: Here too. Right: Right
===

Name: Holmes Other: On Type: D
Comment: A comment here Long: A short Right: Edge

that is a message.
little ongoing,
so to speak.

===

Note that since there were two picture fields that started with the ’^’

character on one line the length of output records varies according to

the length of the two associated data values.

- 38 -

ROW

Usage: row [options] expression

Options:

-help Print this help information.

-fXXX The expression is in the file ’XXX’, instead of on the

command line. The advantage in this case is that no quoting

of chars that might be special to the UNIX shell is necessary.

Selects rows from the input rdbtable based on an arbitrary

expression using column names. Characters that are special to the UNIX

shell must be quoted.

Logical constructors ’or’ and ’and’ may be used; as well as ’null’

to indicate empty data values. Comparison operators may be of the form:

gt, ge, lt, le, eq, ne, mat, nmat. The first six are the usual

operators, E.g ’name eq Hobbs’ or ’COUNT gt 100’. The last two stand

for ’match’ and ’non-match’ and are used for pattern matching. They are

exactally the same as using the PERL operators ’=~’ or ’!~’

respectively, except that pattern matching can be specified easier in

expressions, as in:

NAME mat /[Hh]obbs/ <<< First letter either case
NAME mat /hobbs/i <<< any combination of case
NAME nmat /[aeiou]/i <<< names without vowels

where ’NAME’ and ’COUNT’ are column names, of course. A warning message

is produced on STDERR if either of ’mat’ or ’nmat’ is used with a

numeric type column, but the execution continues. It does not check the

’=~’ or ’!~’ forms.

All of the Comparison operators and Logical constructors are

reserved and should not be used as column names (they are all lower case

and four characters or less).

Since column names and reserved words are parsed by the program, do

not put the entire expression in a single pair of quotes as that will

prevent the parsing. Also note that column names and reserved words

need to be surrounded by blank spaces if they are not individually

quoted. For example either form below is fine:

David A Case

- 39 -

row NAME eq "L Brown" < sample

row "NAME" "eq" "L Brown" < sample

but do not use this form:

row "NAME eq L Brown" < sample

This operator reads an rdbtable via STDIN and writes an rdbtable

via STDOUT. Options may be abbreviated.

As an example using the sample rdbtable from the DATA section

(named sample), to select rows that have the NAME column equal to

’Hansen’ the command would be:

row NAME eq Hansen < sample

which would produce:

NAME COUNT TYP AMT OTHER RIGHT
6 5N 4 5N 8 8>
Hansen 44 A 23 One Is

to select rows that have the TYP column equal to ’A’ or that have the

AMT column greater than 1000 the command would be:

row TYP eq A or AMT gt 1000 < sample

producing:

NAME COUNT TYP AMT OTHER RIGHT
6 5N 4 5N 8 8>
Bush 44 A 133 Another This
Hansen 44 A 23 One Is
Hart 77 D 1111 So Right
Holmes 65 D 1111 On Edge

Note that in some rare cases there could be a column name that is

identical to a data value specified in an expression using another

column name that might cause a problem (this actually happened). For

example if two column names are ’N’ and ’T’, and column ’N’ has a data

value of ’T’, to select all rows where column ’N’ is equal to ’T’ the

normal command would be:

row < table N eq T

Unfortunately the ’T’ in the expression gets translated to ’column name

T’, not used as ’data value T’. That is, the expression askes for all

rows where the data value of column N equals the data value of column T,

- 40 -

legal, but not what was wanted. There is a simple workaround however.

The ’T’ in the expression can be escaped with a backslash to prevent the

translation to a column name, as in the revised command:

row < table N eq ’\T’

Thus either meaning can be specified, as desired.

SEARCH

Usage: search [options] rdbtbl < keytbl

This operator does a fast search of ’rdbtbl’ using a binary search

on a key of of one or more columns. The ’rdbtbl’ must be sorted on the

key columns. Each column in the key may be of type string or type

numeric (but be careful with numeric data and exact matches).

The column(s) in ’keytbl’ specify both the key column name(s) and

the argument values to search for. ’Keytbl’ is also in rdbtable format.

Normally an argument value and a data field must compare exactally

for a match to occur (exact match). If the paritial match otpion

(-part) is selected, and if the argument value compares with the initial

part of the data field it is considered a match. This applies to string

type data only. Note that for numeric type data an exact match is always

necessary.

Normally all rows that match will be written to the new rdbtable,

in the same order as in the old rdbtable. If only a single row key

match is appropriate some execution time can be saved by specifing the

’-sgl’ option.

Options:

-help Print this help info.

-ht Hashtable index search, dbm type index file.

-htr Hashtable index search, regular UNIX index file.

-part Partial (initial) match. Applies to string type data only.

-sgl Only a single row match is needed.

- 41 -

This operator writes an rdbtable via STDOUT. Options may be

abbreviated.

SORTTBL

Usage: sorttbl [options] [-r] column [[-r] column] ...

Sorts an rdbtable on one or more columns. Each column may be sorted

in normal (ascending) or reverse (descending) order. Also a column of

monthnames (Jan, Apr, ...) in any case letters, may be sorted.

This operator reads an rdbtable via STDIN and writes an rdbtable

via STDOUT. Options may be abbreviated. Uses the UNIX ’sort’ routine.

Options:

-c Check that the rdbtable is sorted on the selected columns.

-help Print this help information.

-r Reverse order. Applies to the following column only.

-u Make rows unique on selected columns.

For example, using the sample data file from the DATA section

(named sample) in the following command:

sorttbl COUNT TYP < sample

would produce:

NAME COUNT TYP AMT OTHER RIGHT
6 5N 4 5N 8 8>
Bush 44 A 133 Another This
Hansen 44 A 23 One Is
Holmes 65 D 1111 On Edge
Perry 77 B 244 And The
Hart 77 D 1111 So Right
Jones 77 X 77 Here On

Of course it would look better if it was piped through ’ptbl’.

The command:

sorttbl COUNT -r AMT < sample

would produce:

David A Case

- 42 -

NAME COUNT TYP AMT OTHER RIGHT
6 5N 4 5N 8 8>
Bush 44 A 133 Another This
Hansen 44 A 23 One Is
Holmes 65 D 1111 On Edge
Hart 77 D 1111 So Right
Perry 77 B 244 And The
Jones 77 X 77 Here On

SUBTOTAL

Usage: subtotal [options] B_column ... -s column ...

This operator lists subtotals of specified column(s) whenever the

value of specified break columns(s) (B_column(s)) changes. A single

break column will produce a sub-total of all specified columns on each

line. If there is more than one break column given then in addition

whenever the value of the first break column changes an additional line

will be printed showing the sub-total for that group.

If no break column is given the first column is used; if no sub-

total column is given then all columns of type numeric are sub-totaled.

This operator reads an rdbtable via STDIN and writes an rdbtable

via STDOUT. Options may be abbreviated.

Options:

-help Print this help information.

Example rdbtable (named small):

name amt typ count n
6 5N 4 5N 2
Hansen 39 A 23 3
Hansen 9 A 3 3
Hansen 9 B 3 4
Jones 42 B 144 5
Jones 4 B 14 5
Hart 9 C 3 5
Hart 2 C 55 6
Hart 2 D 55 6
Hobbs 57 X 7 4
Hobbs 5 X 57 4

- 43 -

The output from the command:

subtotal name -s amt < small | ptbl

would be:

name amt
------ -----
Hansen 57
Jones 46
Hart 13
Hobbs 62

The output from the command:

subtotal name typ -s amt count < small | ptbl

is shown in Table 18.

Table 18

OUTPUT FROM THE SUBTOTAL OPERATOR

name typ amt count
------ ---- ----- -----
Hansen A 48 26
Hansen B 9 3

57 29

Jones B 46 158
46 158

Hart C 11 58
Hart D 2 55

13 113

Hobbs X 62 64
62 64

- 44 -

SUMM

Usage: summ [options] [column ...]

Produces "summary" information about the rdbtable. If no columns

are given then information about all columns is produced. A Count of

the data rows is always shown.

This operator reads an rdbtable via STDIN and writes a summary

report via STDOUT. Options may be abbreviated.

Options:

-cu A Count of the unique values for each column given.

-cun Like option ’-cu’ but also shows counts of null (empty) and

blank values (have only space chars), if either exist.

-cuu A Count of each unique value for each column given.

-help Print this help information.

-m The min, average, max, for each column given.

-v Inverse option. Selects all columns except those named.

TBL2LST

Usage: tbl2lst [options]

Converts an rdbtable to "list" format. Long data fields are folded.

This operator is mainly used by other operators.

This RDB operator reads an rdbtable from STDIN and writes an

rdbtable to STDOUT. Options may be abbreviated.

Options:

-edit Edit option. Used by etbl.

-help Print this help information.

-lN Line length of N is to be used.

- 45 -

UNIQTBL

Usage: uniqtbl [options] column ...

Reads the input rdbtable and compares adjacent rows. The second and

succeeding copies of repeated rows, considering only the selected

columns, are removed. That is, adjacent rows are considered equal if

the data values in all of the selected columns are equal. The remaining

rows are written to the output rdbtable.

Note that repeated rows must be adjacent in order to be found.

Normally this means that the input rdbtable should be sorted on the

selected columns for this capability to work properly.

Options:

-D Diagnostic output. Prints number of rows removed on STDERR.

-help Print this help info.

-v Inverse option. Selects all columns except those named.

This RDB operator reads an rdbtable from STDIN and writes an

rdbtable to STDOUT. Options may be abbreviated.

VALID

Usage: valid [options] [file ...]

Validates the structure of one or more rdbtables. Checks number of

data fields per line, max width of column names and data values, and

checks numeric data type values. Reports errors by line number and

column name.

Reads from STDIN if filenames are not given. Writes diagnostic

information on STDOUT. Options may be abbreviated.

Options:

-help Print this help information.

-l[x] List exact data values with visible delimiters, using ’x’ as the

delimiter. The value of ’x’ may be multi-character, default is "|".

-nw No check of the width of the data.

-size Report max size of actual data in each column.

-templ Generate a template file from the header of the table, on STDOUT.

David A Case

- 46 -

Does NOT check the body of the table.

If there is more than one file given each file will be identified

on the output.

The ’-size’ option has proven very useful as it shows the actual

size of the largest data value for each column, in addition to the

template information. The command:

valid -size sample

shows the following output:

0 NAME 6 6
1 COUNT 5N 2
2 TYP 4 1
3 AMT 5N 4
4 OTHER 8 7
5 RIGHT 8> 5

Columns: 6, Rows: 6, File format valid sample

The last two columns above show the defined size of each column in the

rdbtable, and the actual maximum size of the data values for each column

in the rdbtable.

- 47 -

IV. EXTRACTING INFORMATION FROM RDBTABLES

GENERAL

The following shows some examples of how the system is usually

used, which involves a combinations of operators. Using the rdbtable

named ’sample’ the command:

column NAME OTHER TYP AMT < sample | sorttbl TYP AMT | ptbl

gives the output:

NAME OTHER TYP AMT
------ -------- ---- -----
Hansen One A 23
Bush Another A 133
Perry And B 244
Hart So D 1111
Holmes On D 1111
Jones Here X 77

Note that columns COUNT and RIGHT were excluded by the ’column’ oper,

and that the order of the selected columns was changed from that in the

rdbtable. Of course to save the output in a file, (redirection of

STDOUT into a file) something like the following is used:

column ... < sample | sorttbl ... | ptbl > file.out

An example using the operator ’row’ on the rdbtable sample is:

row AMT lt 900 < sample | column NAME AMT TYP RIGHT |\
sorttbl l NAME | ptbl

Note that the ’\’ character at the end of the first line of the above

command is the signal to the UNIX shell that the command is continued on

the next line. Here we select some rows using ’row’, select some columns

using ’column’, sort what we have with ’sorttbl’, and print with ’ptbl’.

The output is:

- 48 -

NAME AMT TYP RIGHT
------ ----- ---- --------
Bush 133 A This
Hansen 23 A Is
Jones 77 X On
Perry 244 B The

A REAL WORLD PROBLEM

The following shell script shows how the RDB operators and other

UNIX utilities can be fitted together to solve a real world problem.

The problem was to find out if the rows in a large rdbtable were unique

over four columns. Since ’summ’ will tell us whether the rows of an

rdbtable are unique on a single column, we need to construct a temporary

tdbtable.

To illustrate the solution on a small rdbtable, the script below

works on an rdbtable like ’sample’ but with some rows repeated. First

the script selects four columns and adds a dummy column named ’uniq’

(using ’column’). It then puts the combined values of the four columns

into the dummy column (using ’compute’). Next it examines the value of

the dummy column ’uniq’ for uniquness (using ’summ’) and then uses the

UNIX command ’egrep’ to show only the lines of interest, e.g. those

lines that start with something other than a ’1’.

column < table.rdb Unit Day Time MSN -a uniq 12 |\

compute uniq = Unit . Day . Time . MSN |\

summ -cuu uniq |\

egrep -v ’^ *1’

The output was like the following:

Rows: 9

Unique values for uniq: 6

2 Jones77X77

3 Perry77B244

- 49 -

meaning that there were (in this example) two rows that had duplicates

over the four columns with one set of values, and three rows that had

duplicate with another set of values.

ANOTHER REAL WORLD PROBLEM

This next one is a bit more complicated although very useful, and

it does demonstrate the use of ’compute’ using a newly created column.

The idea is to make a summary of the data in rdbtable sample3 (from the

section on ’etbl’). The command is:

column name datatype -a nr 2 < sample3 |\
compute nr = ’++$x’ |\
sorttbl datatype name | reporttbl sum.frm

Note that ’column’ selects the two columns on which to make the summary

and adds a new (null) column ’nr’. Then ’compute’ puts data into the new

column by using the PERL expression shown. The expression ’++$x’ merely

increments itself by one each time it is evaluated, an easy way to get

an increasing number. Finally ’sorttbl’ sorts the newly created rdbtable

and it is then printed with ’reporttbl’ using the form file ’sum.frm’.

Table 19

FORM FILE (SUM.FRM)

format top =
@<<<<<<<<<<<<<<<<<<<<<<<<<<<
date

Sample Three Database Summary by Datatype

Datatype Nr Name
-------- -- ---

.
format =

@>>>>>>> @> @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
datatype nr name

.

- 50 -

Table 20

DATABASE SUMMARY EXAMPLE

Wed Dec 4 21:23:20 PST 1991
Sample Three Database Summary by Datatype

Datatype Nr Name
-------- -- ---

ABC 5 ABC Duplicate
ABC 4 ABC Original
ABC 8 LAF-S Air Floating Model
ATO 3 ATO (Air Tasking Orders) Original
ATO 6 ATO Number 2222-11
BDA 1 ACAS (Air Combat Assessment)
BDA 2 ACAS (Air Combat Assessment) BDA Sorties
BDA 7 BDA Supplement number 17

The form file is shown in Table 19 and the output in Table 20.

- 51 -

V. GENERATING OR MODIFING RDBTABLES

GENERATING NEW RDBTABLES

Any editor may be used to construct or modify an rdbtable, since it

is a regular UNIX file, and this ’direct editing’ method is occasionally

used, especially for small amounts of data. However, avoid using an

editor that destroys TAB characters, like the RAND ’e’ editor.

To generate a new rdbtable the best plan (and usually the safest

one) is to first generate a template file, then convert it to rdbtable

format and add the rows of data. Any convenient editor may be used to

generate a template file. To convert it to an rdbtable the command

’headchg -gen’ may be used, which will produce an empty rdbtable. Next

use the operator ’etbl’ to edit in rows of data.

An alternate method is to generate a template file with an editor

and then use the command ’dataent -init template_file’ to enter the rows

of data.

A typical template file is shown below:

These are lines of table documentation. They can be of any length,
and any number of such lines may exist.
Each line must start correctly, e.g with "# " or " #". Any number of
space characters may preceed the sharp sign in the second case above.
0 Name 24 Name of item
1 Type 1 Type: 1,2,3,7,9,A,B,X
2 Count 3N Number of items
3 K 1 Constant modifier
4 SS7 2 Special status for type 7
5 Size 12N In Kilobytes

It makes sense to have all significant or critical documentation

about an rdbtable embedded in the rdbtable, rather than in some other

place. The above template file contains the usual elements to describe

a table of six columns: table documentation (the comment lines that each

start with a sharp sign ’#’), index number (the first number on each of

the column lines), column name ("Name", "Type", "Count", ...), column

definition ("24", "1", "3N", ...), and column documentation for each

column (the text at the end of each column line).

- 52 -

Note that the index number, column name, and column definition all

consist of contiguous characters, each forming a word separated by

whitespace. Also note that there is one or more space characters after

the column definition and before the column documentation. That is, the

column documentation starts with the fourth word on the line.

When the template file is converted into an rdbtable, all

documentation will remain in the header (although the column

documentation may be hard to read if there are many columns). At any

time the entire header, including documentation, can be viewed by using

the command ’valid -templ < rdbtable’ (or ’headchg -templ < rdbtable).

The output from either command will be essentially like the above

example.

MODIFING EXISTING RDBTABLES

Basically there are three ways to modify an existing rdbtable: Use

’dataent’, ’etbl’, or ’mergetbl’. The operator ’dataent’ can only add

new rows of data, and they are added at the end of the existing table.

Therefore the table may need sorting after the modification process is

done. The following command might be used to update an rdbtable using

’dataent’:

dataent rdbtable

The operator ’etbl’ can be used to add new rows, change existing

rows, or delete existing rows of data in an rdbtable. To modify an

rdbtable ’etbl’ can be used in either column or list form. The choice

of form to use depends somewhat on the structure of the rdbtable. If

the rdbtable has several columns of relatively narrow data (that will

all fit in the width of the current window or terminal) and also several

very wide columns (none of which will fit) and changes need to be made

to some of the narrow columns, then it makes sense to use ’etbl’ on the

desired narrow columns in ’column’ form, as in:

- 53 -

etbl table narrow_cola narrow_colb ...

If changes need to be made to some of the wide columns then use ’etbl’

in ’list’ form on the wide columns, plus any key columns necessary, as

in:

etbl -list table control_col ... wide_cola wide_colb ...

After editing an rdbtable it is always recommended that the

structure of the rdbtable be checked with the operator ’valid’. If

there are data values that are longer than the defined column width, use

the command ’valid -n’ to avoid many warning messages.

The ’mergetbl’ process actually involves other operators like

’search’, and ’etbl’, and works only when the existing rdbtable is

sorted on one or more columns (which is a fairly common case). The

process includes selecting rows from an existing sorted rdbtable (using

’search’) into a small rdbtable which is easy to edit (using ’etbl’) and

then combining the two rdbtables again (using ’mergetbl’). Since ’etbl’

is used modifications may include changes, additions, or delitions of

rows. Also note that ’mergetbl’ keeps the final table in sort order.

The difference is that ’search’ is much faster than ’row’ or

’etbl’, the editing is done on a table of conveniently small size, and

that the ’mergetbl’ operation can be done in the background. Remember

that whether one uses ’mergetbl’ or ’etbl’, putting the data back

together after editing requires the entire original table to be passed,

which can take some time if the original rdbtable is large.

CONCATENATING RDBTABLES

The need to concatenate rdbtables comes up every so often and although

it is simple to do it may not be obvious. The UNIX ’cat’ command can

not be used as it would result in duplicating the header and thus make

an invalid rdbtable. And of course, only rdbtables with the same header

should be concatenated, otherwise an invalid rdbtable would result (in

- 54 -

this case it could be a gross inconsistency if the number of columns

were different). If we have two rdbtables, TABA and TABB, then to

concatenate TABB onto the end of TABA we use the command:

headchg -del < TABB >> TABA

Note that this avoids duplicating the header. Note also that in this

case the operator ’headchg’ does not use a template file.

Note also that the operator ’mergetbl’ may be used to merge two

like rdbtables based on a key of one or more columns. In this case

however the two rdbtables must be sorted on the key.

- 55 -

VI. CONVERSION OF EXTERNAL DATA INTO RDBTABLES

The best method I have found to convert data in files that were

received from an external source is to use the PERL Programming

Language. A typical PERL script for such a conversion from a file of

fixed column data is shown in Table 21. The last two lines do most of

the work. Note that this process converts the data into an rdbtable

body only; the rdbtable header must still be generated manually.

The easiest and best way to accomplish the above is to first

construct a template file from known or observed information in the

external data file, then generate the header using ’headchg -gen’. Then

run the PERL script appending the output to the header file. Then run

’valid’ to make sure everything went allright.

- 56 -

Table 21

PERL SCRIPT FOR DATA CONVERSION

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#! /usr/bin/perl
$templ = "A6 A12 x A5 x6 A18 A17 x A38 x4 A2 x A x2 A15 x3 A6 A4 x2" .

" A2 x4 A5 x A3 A3 A4 x26 A12 A12 A12 A29 x7 A3 A3 x6 A6 A6 A8" .
" A4 A3 x3 A3 x3 A8 x10 A2 x4 A12 x138 A6 x66 A24 A36 A12 x6" .
" A6 A6 x6 A6 A24 A12 x50 A42 A42 A42 x34 A12 A12 x186 A6" ;

$0 =~ s-.*/-- ;
$HelpInfo = <<EOH ;

Strip out and reform an ’external’ data file into an rdbtable.

Usage:  $0  [options]  file

Options:
-help    Print this help information.

Strips out the first 46 fields from an ’external’ data file and
reformats it into ’rdbtable’ format (TAB delimited with NEWLINE at end).
Output is on STDOUT.
EOH
while ( $ARGV[0] =~ /^-/ ) {                            # Get args

$_ = shift ;
if( /-h.*/ ){ die $HelpInfo ; }
die  "Bad arg: $_\n", $HelpInfo ;

}
while(<>){

@a = unpack( $templ, $_ );
print join( "\t", @a), "\n" ;

}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- 57 -

VII. DATA ACCESS CONTROL

GENERAL

Since rdbtables are regular UNIX files, we have so far found no

need to implement, and have the associated overhead of, general data

access controls in RDB. Setting the UNIX permissions on files or

directory has proven very useful and effective. This is another

example of how the RDB system works "with" UNIX, not in addition to it,

e.g. not duplicating UNIX functions.

The Revision Control System (RCS) is one of the best configuration

management tools available and is in use here at RAND for version

control of many types of files, including rdbtables. The operator

’etbl’ will automatically check out an rdbtable for editing, and then

check the new version back into RCS. Other operators can utilize

rdbtables that are under RCS control by using commands like:

co -p table | row ... | column ... | ptbl

Note that this checks out an rdbtable, sends it to ’row’, then to

’column’, and finally prints the data with ’ptbl’. In general, any

series of commands necessary can be constructed to do a given task even

if the rdbtables are checked into RCS.

WRITE CONCURRENCY CONTROL

When either of the two utility operators ’etbl’ or ’dataent’ is

used (which modify an rdbtable in place) there could be a possibility

of silmultaneous wrting of an rdbtable by multiple users. That is, if

two or more users, on the same computer or perhaps on different

computers on a network, attempted to modify a given rdbtable with either

’etbl’ or ’dataent’ at the same time the rdbtable could become

corrupted. To prevent this, write concurrency control is provided by

the use of a lockfile, and is in effect when either of the two utility

operators is used.

- 58 -

The name of the lockfile is the name of the rdbtable being modified

with a suffix of ".LCK". For example an rdbtable named "main.rdb" would

have a lockfile named "main.rdb.LCK". The lockfile is placed in the

same directory as the rdbtable and is normally removed after the

modification process is complete, even if the operation is aborted with

an INTERRUPT signal (CONTROL-C or). However in the event of an

emergency such as a computer system crash the lockfile could be left in

place, preventing the use of ’etbl’ or ’dataent’ when the computer

system is again operable. When an attempt to use either utility

operator is made an there is and existing lockfile associated with the

referenced rdbtable an online message is produced and the operator dies.

In this case simply remove the lockfile with the UNIX command ’rm’ and

proceed. If an emergency has not occurred appropriate caution should be

exercised before removing a lockfile, due to the possibility of data

corruption.

- 59 -

VIII. FAST ACCESS METHODS

The RDB operator ’search’ may be used to execute one of two fast

access methods (binary or hashtable search, although currently only

binary search is implemented).

These methods are useful when the key field values of a number of

rows in an existing, large rdbtable is known in advance, a common

situation.

One example of updating an rdbtable using these methods is as

follows. First, ’search’ is used to quickly obtain a new, small

rdbtable consisting of the desired rows from the existing, large

rdbtable. Then ’etbl’ is used to update the data in the new rdbtable,

including generating new rows, changing some rows, and marking certain

rows for deletion, if desired. The next stage would be to use

’mergetbl’ to combine the new and old rdbtables into a new, large

rdbtable, which will still be in sort order (both the old rdbtable and

the new, small one will still exist for backup and/or journaling

purposes). Note that the last step could be done in the background.

- 60 -

IX. LIMITS, A FEW MINOR ONES

The following limits apply.

There must not be any ASCII TAB characters in the data. This

is the primary limit as the ASCII TAB character is the

delimiter in rdbtables.

There must not be any pipe characters ‘|‘ used or entered as

data when using the operator ’etbl’.

All of the Compare operators and Logical constructors are

reserved and should not be used as column names (they are all

lower case and four characters or less). They are: ’gt’, ’ge’,

’lt’, ’le’, ’eq’, ’ne’, ’or’, ’and’, ’null’, ’mat’, and ’nmat’.

- 61 -

X. REFERENCES

1. "Unix Review" magazine, March, 1991, page 24, "A 4GL Language".

2. "UNIX Relational Database Management", R. Manis, E. Schaffer,
R. Jorgensen, 1988, Prentice Hall.

3. "Programming PERL", L. Wall, R. Schwartz, 1991, O’Reilly &
Associates.

- 62 -

Appendix A

EXAMPLES OF PERL EXPRESSIONS AND STATEMENTS

Following are some examples of PERL expressions and statements of

the type that might be used with RDB operators, and their meaning. Note

that the operator ’row’ takes a PERL expression while the operator

’compute’ takes a complete PERL statement.

Expressions:

COLA mat /XXX/

-- column COLA contains the pattern ’XXX’.

COLA nmat /XXX/

-- column COLA does NOT contain the pattern ’XXX’.

COLA mat /^XXX/

-- column COLA starts with the pattern ’XXX’.

COLA mat /XXX$/

-- column COLA ends with the pattern ’XXX’.

COLA ne null

-- column COLA is not null (but it could contain blanks).

COLA mat /^\s*$/

-- column COLA is null or contains only blank space.

COLA eq ’YYY’

-- column COLA equals the literal ’YYY’.

COLA mat /X..Y/

-- column COLA contains the pattern ’X..Y’, which means

’X’, followed by any two characters, then ’Y’.

COLA mat /X.*Y/

-- column COLA contains the pattern ’X.*Y’, which means

’X’, followed by any number of (including zero)

characters, then ’Y’.

NUMC eq 12

-- column NUMC equals 12.

- 63 -

COLA ne null && COLB ne null

-- column COLA and column COLB are not null (empty).

COLA eq ’ABC’ || COLA eq ’BCD’

-- column COLA equals the literal ’ABC’ or column COLB

equals the literal ’BCD’

Statements:

COLA = COLB ;

-- set the value of column COLA to that of COLB.

NUMC = NUMC - 7 ;

-- decrement the value of column NUMC by 7.

NUMC -= 7 ;

-- (same as above).

NUMC = NUMC / 4 ;

-- divide the value of column NUMC by 4.

NUMC *= 2.3 ;

-- multiply the value of column NUMC by 2.3.

$abc++ ;

-- increment the value of variable $abc by 1.

++$abc ;

-- (same as above).

COLA = ’WORDS’ ;

-- set the value of column COLA to the literal ’WORDS’.

NUMC = 12 ;

-- set the value of column NUMC to 12.

if(COLA mat /XXX/){ COLA .= ’YYY’ ; }

-- If column COLA contains the pattern ’XXX’ then add

the literal ’YYY’ to the end.

COLA .= ’YYY’ if COLA =~ /XXX/ ;

-- (same as above).

if(COLA eq ’ABC’ || COLA eq ’BCD’){ COLA = ’XXX’ ; }

-- If column COLA equals ’ABC’ or ’BCD’ set the value

of COLA to ’XXX’.

- 64 -

- iii -

PREFACE

This working draft describes, and provides instructions for the use

of, the RDB system as it currently exists at RAND. The RDB system is

currently used by a number of projects at RAND, however the development

is not finished and there are plans to make enhancements and extensions

as required. Accordingly, revisions of this document will be produced.

The preparation of this research document was sponsored through

RAND’s three federally funded research and development centers - the

National Defense Research Institute (sponsored by the Office of the

Secretary of Defense and the Joint Staff), the Arroyo Center (sponsored

by the U.S. Army), and Project AIR FORCE (sponsored by the U.S. Air

Force).

It should be noted that the development of the computer code

comprising the RDB system was not done under any RAND contract and was

accomplished on non-RAND time as a personal computer science project of

the author.

- iv -

SUMMARY

RDB is a fast, portable, relational database management system

without arbitrary limits, (other than memory and processor speed) that

runs under, and interacts with, the UNIX Operating system.

It uses the Operator/Stream DBMS paradigm described in "Unix

Review", March, 1991, page 24, entitled "A 4GL Language". There are a

number of "operators" that each perform a unique function on the data.

The "stream" is suplied by the UNIX Input/Output redirection mechanism.

Therefore each operator processes some data and then passes it along to

the next operator via the UNIX pipe function. This is very efficient as

UNIX pipes are implemented in memory (at least in versions of UNIX at

RAND). RDB is compliant with the "Relational Model".

The data is contained in regular UNIX ACSII files, and so can be

manipulated by regular UNIX utilities, e.g. ls, wc, mv, cp, cat, more,

less, editors like the RAND editor ’e’, head, RCS, etc.

The form of each file of data is that of a relation, or table, with

rows and columns of information.

To extract information, a file of data is fed to one or more

"operators" via the UNIX Input/Output redirection mechanism.

There are also programs to generate reports, and to generate,

modify, and validate the data.

- v -

ACKNOWLEDGEMENTS

I would like to thank the following people for their ideas and

suggestions on the implementation and improvement of the RDB system, as

well as some needed checkout of obscure bugs in the code:

Chuck Bush

Don Emerson

Judy Lender

Roy Gates

Rae Starr

- vii -

CONTENTS

PREFACE .. iii

SUMMARY .. iv

ACKNOWLEDGEMENTS ... v

TABLES .. ix

Section
I. INTRODUCTION .. 1

II. DATA (RDBTABLE) ... 3

III. OPERATORS ... 7
COLUMN .. 8
COMPUTE ... 9
DATAENT ... 12
ETBL .. 13
HEADCHG ... 19
JOINTBL ... 21
LST2TBL ... 23
MERGETBL .. 24
MKTBL ... 25
PTBL .. 25
REPAIR .. 31
REPORTTBL ... 32
ROW ... 38
SEARCH .. 40
SORTTBL ... 41
SUBTOTAL .. 42
SUMM .. 44
TBL2LST ... 44
UNIQTBL ... 45
VALID ... 45

IV. EXTRACTING INFORMATION FROM RDBTABLES 47
General ... 47
A Real World Problem 48
Another Real World Problem 49

V. GENERATING OR MODIFING RDBTABLES 51
Generating new rdbtables 51
Modifing existing rdbtables 52
Concatenating Rdbtables 53

VI. CONVERSION OF EXTERNAL DATA INTO RDBTABLES 55

- viii -

VII. DATA ACCESS CONTROL 57
General ... 57
Write Concurrency Control 57

VIII. FAST ACCESS METHODS 59

IX. LIMITS, A FEW MINOR ONES 60

X. REFERENCES .. 61

Appendix
A. EXAMPLES OF PERL EXPRESSIONS AND STATEMENTS 62

- ix -

TABLES

1. Rdbtable (sample) .. 5
2. Rdbtable (sample) Actual Content 5
3. Rdbtable (sample) Ready to Edit, Column Form 16
4. Rdbtable (sample3) Actual Content 17
5. Rdbtable (sample3) Ready to Edit, List Form 18
6. Natural Join of Rdbtables samplej and samplej2 23
7. Master-Detail Join of Rdbtables samplej and samplej2 23
8. Printing Rdbtable (sample) Using ptbl 27
9. Printing Rdbtable (sample) with Page Heading Using ptbl

.. 27
10. Rdbtable with Long Data Values (sample4) Actual Content

.. 28
11. Printing Rdbtable (sample4) with ptbl -trunc Option 28
12. Printing Rdbtable (sample4) with ptbl -fold Option 29
13. Form File for Rdbtable (sample) 34
14. Printing Rdbtable (sample) with Reporttbl 34
15. Another Form File .. 35
16. Form File for Rdbtable (sample2) 36
17. Printing Rdbtable (sample2) with Reporttbl 37
18. Output from the subtotal Operator 43
19. Form File (sum.frm) 49
20. Database Summary Example 50
21. PERL Script for Data Conversion 56

